Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23632, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229310

RESUMO

The development of heart disease involves interconnected factors such as oxidative stress, inflammation, and vascular dysfunction. Andrographolide (AG), known for its potent antioxidant and anti-inflammatory properties, has the potential to counteract lipopolysaccharides (LPS)-induced endothelial dysfunction by reducing oxidative stress and inflammation. Our research aimed to investigate the effects of AG on alleviating vascular endothelium dysfunction, oxidative stress, and inflammation in an experimental model induced by LPS. To create chronic vascular endothelium dysfunction, inflammation, and oxidative stress, rats received weekly injections of LPS via their tail vein over a 6-week period. The study evaluated the therapeutic effects of orally administered AG (50 mg/kg/day) on diseased conditions. We conducted aortic histology and measured nitric oxide (NO) thresholds, superoxide dismutase (SOD) activity, constitutive nitric oxide (cNOS) activity, and inducible nitric oxide (iNOS) levels, alongside several inflammatory biomarkers. To evaluate endothelial dysfunction, we assessed endothelium-dependent and endothelium-independent vasorelaxation in aortas through histopathological and various immunoassays examinations. Vascular Endothelial inflammatory activity was consequently enhanced in LPS groups animals when compared to normal control, also endothelial performance were dependently improved by AG therapy. IL-1ß and tumors necrosis factor levels in the aorta decreased in a dose-dependent manner after exogenous AG delivery to LPS-treated rats. However, in current research work aortic SOD activity, NO levels, and cNOS activity increased, whereas aortic malondialdehyde levels and iNOS activity decreased after the AG treatment. These findings suggest that long-term AG therapy could be considered as a potential therapy to avoid vascular endothelial dysfunction and major nonobstructive coronary artery disease.


Assuntos
Diterpenos , Endotélio Vascular , Lipopolissacarídeos , Ratos , Animais , Ratos Sprague-Dawley , Lipopolissacarídeos/toxicidade , Óxido Nítrico/metabolismo , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Superóxido Dismutase/metabolismo
2.
Toxicol Mech Methods ; 34(2): 176-188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37904548

RESUMO

Imidacloprid (IMI), a widely used pesticide in agriculture and a potential food contaminant, poses significant health concerns. This study sought to comprehensively evaluate its neurotoxic effects while investigating the potential protective role of alpha-lipoic acid (ALA), a naturally occurring dietary antioxidant renowned for its capacity to combat oxidative stress, support cardiovascular health, and maintain optimal nerve function. In this study, 28 rats were divided evenly into four groups and administered oral treatments of corn oil, IMI, IMI + ALA, and ALA, respectively. The results of the study indicated that rats exposed to IMI exhibited significant neurobehavioral impairments, decreased levels of antioxidant enzymes and acetylcholinesterase activity, reduced expression of HO-1 and Nrf2, and increased levels of pro-inflammatory cytokines like IL-6 and TNF-α in their hippocampal tissues. Furthermore, histopathological analysis of the brain tissues, specifically cortex and hippocampus, from the IMI-treated group revealed varying degrees of neuronal degeneration. In contrast, rats co-administered ALA alongside IMI showed noticeable improvements in all the assessed toxicological parameters. This study underscores the vital significance of ALA as a potential therapeutic adjunct in mitigating the adverse neurobehavioral consequences of insecticide exposure. By harnessing the Nrf2/HO-1 pathway, ALA demonstrates its ability to shield against IMI-induced neurotoxicity, offering a promising avenue for enhancing public health and safety. As a result, our findings advocate for the incorporation of ALA as a daily dietary supplement to fortify resilience against oxidative stress-related neurobehavioral deficits linked to pesticide exposure, thereby advancing our understanding of neuroprotection strategies in the face of environmental challenges.


Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Ácido Tióctico , Ratos , Animais , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Ácido Tióctico/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Acetilcolinesterase/metabolismo , Inseticidas/toxicidade , Estresse Oxidativo
3.
Curr Issues Mol Biol ; 45(3): 2201-2212, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36975512

RESUMO

Lipopolysaccharide (LPS) has potent pro-inflammatory properties and acts on many cell types including vascular endothelial cells. The secretion of the cytokines MCP-1 (CCL2), interleukins, and the elevation of oxidative stress by LPS-activated vascular endothelial cells contribute substantially to the pathogenesis of vascular inflammation. However, the mechanism involving LPS-induced MCP-1, interleukins, and oxidative stress together is not well demonstrated. Serratiopeptidase (SRP) has been widely used for its anti-inflammatory effects. In this research study, our intention is to establish a potential drug candidate for vascular inflammation in cardiovascular disorder conditions. We used BALB/c mice because this is the most successful model of vascular inflammation, suggested and validated by previous research findings. Our present investigation examined the involvement of SRP in vascular inflammation caused by lipopolysaccharides (LPSs) in a BALB/c mice model. We analyzed the inflammation and changes in the aorta by H&E staining. SOD, MDA, and GPx levels were determined as per the instructions of the kit protocols. ELISA was used to measure the levels of interleukins, whereas immunohistochemistry was carried out for the evaluation of MCP-1 expression. SRP treatment significantly suppressed vascular inflammation in BALB/c mice. Mechanistic studies demonstrated that SRP significantly inhibited the LPS-induced production of proinflammatory cytokines such as IL-2, IL-1, IL-6, and TNF-α in aortic tissue. Furthermore, it also inhibited LPS-induced oxidative stress in the aortas of mice, whereas the expression and activity of monocyte chemoattractant protein-1 (MCP-1) decreased after SRP treatment. In conclusion, SRP has the ability to reduce LPS-induced vascular inflammation and damage by modulating MCP-1.

4.
Mol Cell Biochem ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642880

RESUMO

Cardiovascular diseases (CVDs) are a matter of concern worldwide, and mitochondrial dysfunction is one of the major contributing factors. Vascular endothelial dysfunction has a major role in the development of atherosclerosis because of the abnormal chemokine secretion, inflammatory mediators, enhancement of LDL oxidation, cytokine elevation, and smooth muscle cell proliferation. Endothelial cells transfer oxygen from the pulmonary circulatory system to the tissue surrounding the blood vessels, and a majority of oxygen is transferred to the myocardium by endothelial cells, which utilise a small amount of oxygen to generate ATP. Free radicals of oxide are produced by mitochondria, which are responsible for cellular oxygen uptake. Increased mitochondrial ROS generation and reduction in agonist-stimulated eNOS activation and nitric oxide bioavailability were directly linked to the observed change in mitochondrial dynamics, resulting in various CVDs and endothelial dysfunction. Presently, the manuscript mainly focuses on endothelial dysfunction, providing a deep understanding of the various features of mitochondrial mechanisms that are used to modulate endothelial dysfunction. We talk about recent findings and approaches that may make it possible to detect mitochondrial dysfunction as a potential biomarker for risk assessment and diagnosis of endothelial dysfunction. In the end, we cover several targets that may reduce mitochondrial dysfunction through both direct and indirect processes and assess the impact of several different classes of drugs in the context of endothelial dysfunction.

5.
Cell Mol Neurobiol ; 42(4): 1189-1210, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33222098

RESUMO

Extensive applications of ZnO NPs (zinc oxide nanoparticles) in daily life have created concern about their biotoxicity. Zinc oxide nanoparticles induce oxidative stress, inflammation, and apoptosis in neurons. Edaravone applies antioxidant agent and anti-inflammatory impacts in the different cells, as evaluated in both in vitro and in vivo experimental models. This study is designed to explore, how edaravone would avert mitochondrial impairment in human neuronal cells against ZnO NPs-induced toxicity. Accordingly, we analyzed here whether a pretreatment (for 24 h) with edaravone (10-100 µM) would enhance mitochondrial protection in the human neuroblastoma cells SH-SY5Y against ZnO NPs-induced toxicity. We found that edaravone at 25 µM averted the ZnO NPs-induced decrease in the amounts of adenosine triphosphate (ATP), just as on the activity of the complexes I and V. Also, edaravone induced an antioxidant activity by diminishing the levels of lipid peroxidation, protein carbonylation, and protein nitration in the mitochondrial membranes. Edaravone blocked the ZnO NPs-induced transcription factor nuclear factor-κB (NF-κB) upregulation. The inhibition of the heme oxygenase-1 (HO-1) enzyme by zinc protoporphyrin IX (ZnPP IX, 10 µM) smothered the preventive impacts brought about by edaravone with respect to mitochondrial function and inflammation. After this examination, it can be concluded that edaravone caused cytoprotective impacts in an HO-1-dependent manner in SH-SY5Y cells against ZnO NPs-induced toxicity.


Assuntos
Neuroblastoma , Óxido de Zinco , Linhagem Celular Tumoral , Edaravone/farmacologia , Humanos , Neuroblastoma/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/toxicidade
6.
Glycoconj J ; 39(4): 547-563, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579827

RESUMO

Atherosclerosis is the most common type of cardiovascular disease, and it causes intima thickening, plaque development, and ultimate blockage of the artery lumen. Advanced glycation end products (AGEs) are thought to have a role in the development and progression of atherosclerosis. there is developing an enthusiasm for AGEs as a potential remedial target. AGES mainly induce arterial damage and exacerbate the development of atherosclerotic plaques by triggering cell receptor-dependent signalling. The interplay of AGEs with RAGE, a transmembrane signalling receptor present across all cells important to atherosclerosis, changes cell activity, boosts expression of genes, and increases the outflow of inflammatory compounds, resulting in arterial wall injury and plaque formation. Here in this review, function of AGEs in the genesis, progression, and instability of atherosclerosis is discussed. In endothelial and smooth muscle cells, as well as platelets, the interaction of AGEs with their transmembrane cell receptor, RAGE, triggers intracellular signalling, resulting in endothelial damage, vascular smooth muscle cell function modification, and changed platelet activity.


Assuntos
Aterosclerose , Placa Aterosclerótica , Aterosclerose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
7.
Mol Biol Rep ; 49(3): 2487-2501, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35013861

RESUMO

BACKGROUND: The production of lipid-laden cells in macrophages after significant ingestion of oxidized low-density lipoprotein is considered the most critical phase in the creation of atherosclerotic lesions, which is known as foam cell formation. Targeting foam cell development to find a potential therapeutic strategy for the management of atherosclerosis has yielded numerous promising outcomes. Multiple variables influence foam cell growth, including scavenger receptor expression, cholesterol transporter expression acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. Plants used during herbal therapy have been shown to assist with a variety of ailments. RESULT: In this study, we found medicinal plants and their bioactive components suppress foam cell formation in a variety of ways; some inhibit cholesterol transporter and lectin-like oxidized low-density lipoprotein receptor-1 upregulation, while others inhibit the function of acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. CONCLUSION: Recent study findings related to the synthesis of the new active component from plant sources by focusing on the typical process involved in the generation of foam cells. We're also looking at using a cellular target-based therapeutic approach to generate novel plant-based medications for the cure of atherosclerosis.


Assuntos
Aterosclerose , Células Espumosas , Aterosclerose/metabolismo , Colesterol/metabolismo , Expressão Gênica , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo
8.
Toxicol Mech Methods ; 32(9): 650-661, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35403559

RESUMO

Nanoparticles (range under 100 nm) prepared by different technology modes including physical, chemical, biological have many applications. Like in the same way silver nanoparticles are used for different beneficial actions like antimicrobial- antibacterial, antifungal and antiviral, anti-inflammatory, anticancer, water treatment, cosmetics, and in the textiles industry. As silver nanoparticles have shown wide application by different mechanisms against various pathophyisiological conditions. To maintain safety under their use, the study of the toxicity of silver nanoparticles has become more important. Health agencies like WHO, NIOSH, EPA, EFSA & EU have issued guidelines for unrisky exposure limit of silver nanopartricles in drinking water, food and breathing. The main purpose of this article is to summarize genotoxicity, cytotoxicity, neurotoxicity, reproductive toxicity of silver nanoparticles in both in vitro and in vivo studies focused on mechanism and methods of detection. The main mechanism of silver nanoparticles toxicity involves disruption of the mitochondrial respiratory chain, which results in the generation of ROS and the stoppage of ATP synthesis which further leads to a cascade of toxic events. ROS production measured by the technique like flow cytometry using DCFHDA dye and other method includes a confocal microscope, lipid peroxidation, etc. Different assay techniques used for evaluation of different kind of toxicities such as the comet assay, MTT assay, and histological assay, are also discussed.


Assuntos
Água Potável , Nanopartículas Metálicas , Trifosfato de Adenosina , Antibacterianos/toxicidade , Anti-Inflamatórios , Antifúngicos , Antivirais , Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio , Prata/toxicidade
9.
J Membr Biol ; 254(4): 367-380, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34169340

RESUMO

K2P channel is the leaky potassium channel that is critical to keep up the negative resting membrane potential for legitimate electrical conductivity of the excitable tissues. Recently, many substances and medication elements are discovered that could either straightforwardly or in a roundabout way influence the 15 distinctive K+ ion channels including TWIK, TREK, TASK, TALK, THIK, and TRESK. Opening and shutting of these channels or any adjustment in their conduct is thought to alter the pathophysiological condition of CNS. There is no document available till now to explain in detail about the molecular mechanism of agents acting on K2P channel. Accordingly, in this review we cover the current research and mechanism of action of these channels, we have also tried to mention the detailed effect of drugs and how the channel behavior changes by focusing on recent advances regarding activation and modulation of ion channels.


Assuntos
Doenças do Sistema Nervoso , Canais de Potássio de Domínios Poros em Tandem , Humanos , Potenciais da Membrana , Doenças do Sistema Nervoso/tratamento farmacológico , Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética
10.
Curr Atheroscler Rep ; 21(4): 12, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30820759

RESUMO

PURPOSE OF REVIEW: Summarize of the reports on antioxidants especially from herbal sources which battle oxidative stress might be proficient to forestall and repair the free radical-prompted vascular damages in overseeing of atherosclerosis. RECENT FINDINGS: Atherosclerosis is the one of the fundamental reason for hypertension, stroke, myocardial localized necrosis, and numerous other cardiovascular illnesses. Atherosclerosis associated path physiological factors like hypercholesterolemia, hypertension, diabetes mellitus, and smoking actuates oxidative stress which are characterized by excessive oxidation and improper exclusion. The herbal plant-based antioxidant agents are effective towards the management/treatment of atherosclerosis by different ways like, by diminishing the oxidation of low-density lipoproteins, diminishing the cell proliferation, restraining the foam cell arrangement, and advancing the reverse cholesterol transport, down regulation of pro-atherogenic genes, and inflammatory mediators. This review is a critical analysis about the role of oxidative stress in atherogenesis and furthermore outlines the ongoing study/examination done on the management of atherosclerosis by utilizing herbal antioxidant agents.


Assuntos
Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Aterosclerose/tratamento farmacológico , Magnoliopsida/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Aterosclerose/etiologia , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
Curr Atheroscler Rep ; 21(10): 38, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31350594

RESUMO

PURPOSE OF REVIEW: In any case, in proatherogenic conditions, LOX-1 is uniquely upregulated in vascular cells and mediates the entire atherogenic process from LDL oxidation to plague arrangement. As evidence supporting the crucial role of LOX-1 in atherogenesis keeps accumulating, there is developing an enthusiasm for LOX-1 as a potential remedial target. RECENT FINDINGS: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for binding and uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells. Following internalization of oxLDL, LOX-1 starts a vicious cycle from activation of proinflammatory signaling pathways, subsequently advancing an expanded responsive oxygen species arrangement and secretion of proinflammatory cytokines. In healthy arteries, expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is practically undetectable. This review portrays existing evidence supporting the role of LOX-1 in mediating of proatherosclerotic impacts of oxLDL which result in endothelial dysfunction, proinflammatory recruitment of monocytes into the arterial intima, arrangement of foam cells, endothelial cell dysfunction and vascular smooth muscle cell proliferation, and platelet enactment, angiogenesis just as in plaque development. Likewise, abridges LOX-1 modulatory compounds and in vivo and in vitro examinations toward the improvement of small molecules and biologics that could be of therapeutic use.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Receptores Depuradores Classe E/metabolismo , Regulação para Cima , Células Endoteliais/metabolismo , Células Espumosas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/fisiopatologia , Placa Aterosclerótica/metabolismo , Ativação Plaquetária , Espécies Reativas de Oxigênio/metabolismo , Receptores Depuradores Classe E/antagonistas & inibidores , Transdução de Sinais
12.
Toxicol Mech Methods ; 29(4): 300-311, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30489211

RESUMO

Zinc oxide (ZnO) is the most commonly used nanoparticles among different nanoparticles. Its applications ranged from personal care products, sensors, antibacterial creams, and biomedical applications. The broad range of applications raises concern in regards to their potential toxicity. Therefore, it is required to understand their toxicity mechanism and pattern on various levels. The primary aim of this review is to summarize the cytotoxicity, genotoxicity, neurotoxicity, and developmental toxicity of ZnO nanoparticles in various kinds of cells in vitro and in vivo. Literatures available on ZnO nanoparticles toxicity suggest that dissolution, organism dependent cellular uptake, generation of reactive oxygen species (ROS), and induced inflammatory responses seem to be common factors which govern the toxicity of ZnO nanoparticles.


Assuntos
Dano ao DNA , Exposição Ambiental/efeitos adversos , Nanopartículas/toxicidade , Síndromes Neurotóxicas/etiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Óxido de Zinco/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Humanos , Nanopartículas/metabolismo , Síndromes Neurotóxicas/metabolismo , Gravidez , Óxido de Zinco/farmacocinética
14.
Curr Hypertens Rev ; 20(1): 10-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318826

RESUMO

Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in the formation of uric acid (UA) and is involved in the generation of reactive oxygen species (ROS). Overproduction of ROS has been linked to the pathogenesis of hypertension, atherosclerosis, and cardiovascular disease, with multiple studies over the last 30 years demonstrating that XOR inhibition is beneficial. The involvement of XOR and its constituents in the advancement of chronic inflammation and ROS, which are responsible for endothelial dysfunction, is the focus of this evidence-based review. An overabundance of XOR products and ROS appears to drive the inflammatory response, resulting in significant endothelium damage. It has also been demonstrated that XOR activity and ED are connected. Diabetes, hypertension, and cardiovascular disease are all associated with endothelial dysfunction. ROS mainly modifies the activity of vascular cells and can be important in normal vascular physiology as well as the development of vascular disease. Suppressing XOR activity appears to decrease endothelial dysfunction, probably because it lessens the generation of reactive oxygen species and the oxidative stress brought on by XOR. Although there has long been a link between higher vascular XOR activity and worse clinical outcomes, new research suggests a different picture in which positive results are mediated by XOR enzymatic activity. Here in this study, we aimed to review the association between XOR and vascular endothelial dysfunction. The prevention and treatment approaches against vascular endothelial dysfunction in atherosclerotic disease.


Assuntos
Endotélio Vascular , Estresse Oxidativo , Espécies Reativas de Oxigênio , Xantina Desidrogenase , Humanos , Xantina Desidrogenase/metabolismo , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Hipertensão/fisiopatologia , Hipertensão/enzimologia , Hipertensão/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/sangue , Inibidores Enzimáticos/farmacologia
15.
Mitochondrion ; 78: 101923, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925493

RESUMO

Ageing is an inevitable phenomenon which affects the cellular to the organism level in the progression of the time. Oxidative stress and inflammation are now widely regarded as the key processes involved in the aging process, which may then cause significant harm to mitochondrial DNA, leading to apoptosis. Normal circulatory function is a significant predictor of disease-free life expectancy. Indeed, disorders affecting the cardiovascular system, which are becoming more common, are the primary cause of worldwide morbidity, disability, and mortality. Cardiovascular aging may precede or possibly underpin overall, age-related health decline. Numerous studies have foundmitochondrial mechanistc approachplays a vital role in the in the onset and development of aging. The D-galactose (D-gal)-induced aging model is well recognized and commonly used in the aging study. In this review we redeposit the association of the previous and current studies on mitochondrial homeostasis and its underlying mechanisms in D-galactose cardiovascular ageing. Further we focus the novel and the treatment strategies to combat the major complication leading to the cardiovascular ageing.

16.
Toxicol Res (Camb) ; 13(3): tfae077, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38939724

RESUMO

INTRODUCTION: The rapid development of nanotechnologies with their widespread prosperities has advanced concerns regarding potential health hazards of the Nanoparticles. RESULTS: Nanoparticles are currently present in several consumer products, including medications, food, textiles, sports equipment, and electrical components. Despite the advantages of Nanoparticles, their potential toxicity has negative impact on human health, particularly on reproductive health. CONCLUSIONS: The impact of various NPs on reproductive system function is yet to be determined. Additional research is required to study the potential toxicity of various Nanoparticles on reproductive health. The primary objective of this review is to unravel the toxic effects of different Nanoparticles on the human reproductive functions and recent investigations on the reproductive toxicity of Nanoparticles both in vitro and in vivo.

17.
Ageing Res Rev ; 96: 102255, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38490497

RESUMO

The escalating prevalence of neurodegenerative diseases (NDDs) within an aging global population presents a pressing challenge. The multifaceted pathophysiological mechanisms underlying these disorders, including oxidative stress, mitochondrial dysfunction, and neuroinflammation, remain complex and elusive. Among these, the AMPK/SIRT1/PGC-1α pathway emerges as a pivotal network implicated in neuroprotection against these destructive processes. This review sheds light on the potential therapeutic implications of targeting this axis, specifically emphasizing the promising role of flavonoids in mitigating NDD-related complications. Expanding beyond conventional pharmacological approaches, the exploration of non-pharmacological interventions such as exercise and calorie restriction (CR), coupled with the investigation of natural compounds, offers a beacon of hope. By strategically elucidating the intricate connections within these pathways, this review aims to pave the ways for novel multi-target agents and interventions, fostering a renewed optimism in the quest to combat and manage the debilitating impacts of NDDs on global health and well-being.


Assuntos
Doenças Neurodegenerativas , Sirtuína 1 , Humanos , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento , Estresse Oxidativo , Encéfalo/metabolismo , Doenças Neurodegenerativas/terapia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo
18.
Curr Pharm Des ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803178

RESUMO

In the last decade, there has been increasing evidence connecting mitochondrial dysfunction to the onset and advancement of atherosclerosis. Both reactive oxygen species (ROS) and the disruption of mitochondrial calcium (Ca2+) regulation have garnered significant attention due to their involvement in various stages of atherosclerosis. This abstract discusses the potential therapeutic applications of targeting mitochondrial calcium (Ca2+) and reactive oxygen species (ROS), while also providing an overview of their respective roles in atherosclerosis. The abstract underscores the importance of mitochondrial Ca2+ homeostasis in cellular physiology, including functions such as energy production, cell death signaling, and maintaining redox balance. Alterations in the mitochondria's Ca2+ handling disrupt all these procedures and speed up the development of atherosclerosis. Reactive oxygen species (ROS), generated during mitochondrial respiration, are widely recognized as significant contributors to the development of atherosclerosis. Through modulating the function of calcium ion (Ca2+) transport proteins, ROS can impact the regulation of mitochondrial Ca2+ handling. These oxidative modifications lead to vascular remodeling and plaque formation by impairing endothelial function, encouraging the recruitment of inflammatory cells, and promoting smooth muscle cell proliferation. Preclinical investigations indicate that interventions aimed at regulating the production and elimination of reactive oxygen species (ROS) hold promise for mitigating atherosclerosis. Targeting mitochondrial processes represents a prospective therapeutic strategy for addressing this condition. Further research is necessary to elucidate the intricate molecular mechanisms associated with mitochondrial dysfunction in atherosclerosis and develop effective therapeutic strategies to decelerate disease progression.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38747226

RESUMO

Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide- 1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.

20.
Int Immunopharmacol ; 117: 109916, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36827927

RESUMO

The present article provides a detailed concept of the role of NLRP3 inflammasome in the pathophysiology of depression-like chronic diseases where inflammation and release of various cytokines plays a pivotal role in exaggerating the condition. The various pathways involved in NLRP3 activation are the main target of NLRP3 inhibitors for the therapeutic management of depression as per the recent clinical and research studies conducted so far. Further various drug inhibitors for NLRP3 available in preclinical and clinical trials have been discussed in detail. Hence, blockage of the action of NLRP3 inflammasome is crucial to anticipate the inflammatory cytokine release from the mediators that contributes to cause depression.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA