Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686417

RESUMO

Since the early observations that nitric oxide (•NO) at high concentrations is cytotoxic to cancer cells and that it may play an important role in the treatment of human cancers, a significant number of compounds (NO-donors) have been prepared to deliver •NO to tumors. •NO also sensitizes various clinically active anticancer drugs and has been shown to induce the reversal of multi-drug resistance in tumor cells expressing ATP-binding cassette-transporter proteins. For the successful treatment of cancers, •NO needs to be delivered precisely to tumors, and its adverse toxicity must be limited. Like other chemotherapeutics, the precise delivery of drugs has been a problem and various attempts have been made, such as the encapsulation of drugs in lipid polymers, to overcome this. This prospective study examines the use of various strategies for delivering •NO (using NO-donors) for the treatment of cancers. Finding and utilizing such a delivery system is an important step in delivering cytotoxic concentrations of •NO to tumors without adverse reactions, leading to a successful clinical outcome for patient management.


Assuntos
Neoplasias , Óxido Nítrico , Humanos , Estudos Prospectivos , Neoplasias/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP , Polímeros
2.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955744

RESUMO

NCX4040, the non-steroidal anti-inflammatory-NO donor, is cytotoxic to several human tumors, including ovarian tumor cells. We have found that NCX4040 is also cytotoxic against both OVCAR-8 and its adriamycin resistant (NCI/ADR-RES) tumor cell lines. Here, we have examined mechanism(s) for the cytotoxicity of NCX4040 in OVCAR-8 and NCI/ADR-RES cell lines. We found that NCX4040 induced significant apoptosis in both cell lines. Furthermore, NCX4040 treatment caused significant depletion of cellular glutathione, causing oxidative stress due to the formation of reactive oxygen/nitrogen species (ROS/RNS). Significantly more ROS/RNS were detected in OVCAR-8 cells than in NCI/ADR-RES cells which may have resulted from increased activities of SOD, glutathione peroxidase and transferases expressed in NCI/ADR-RES cells. NCX4040 treatment resulted in the formation of double-strand DNA breaks in both cells; however, more of these DNA breaks were detected in OVCAR-8 cells. RT-PCR studies indicated that NCX4040-induced DNA damage was not repaired as efficiently in NCI/ADR-RES cells as in OVCAR-8 cells which may lead to a differential cell death. Pretreatment of OVCAR-8 cells with N-acetylcysteine (NAC) significantly decreased cytotoxicity of NCX4040 in OVCAR-8 cells; however, NAC had no effects on NCX4040 cytotoxicity in NCI/ADR-RES cells. In contrast, FeTPPS, a peroxynitrite scavenger, completely blocked NCX4040-induced cell death in both cells, suggesting that NCX4040-induced cell death could be mediated by peroxynitrite formed from NCX4040 following cellular metabolism.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/farmacologia , Aspirina/análogos & derivados , Carcinoma Epitelial do Ovário , Doxorrubicina/farmacologia , Feminino , Humanos , Nitrocompostos , Neoplasias Ovarianas/patologia , Ácido Peroxinitroso , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
3.
Biochim Biophys Acta ; 1860(7): 1519-27, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27095671

RESUMO

BACKGROUND: Etoposide and doxorubicin, topoisomerase II poisons, are important drugs for the treatment of tumors in the clinic. Topoisomerases contain several free sulfhydryl groups which are important for their activity and are also potential targets for nitric oxide (NO)-induced nitrosation. NO, a physiological signaling molecule nitrosates many cellular proteins, causing altered protein and cellular functions. METHODS: Here, we have evaluated the roles of NO/NO-derived species in the activity/stability of topo II both in vitro and in human tumor cells, and in the cytotoxicity of topo II-poisons, etoposide and doxorubicin. RESULTS: Treatment of purified topo IIα with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of both the catalytic and relaxation activity in vitro, and decreased etoposide-dependent cleavable complex formation in both human HT-29 colon and MCF-7 breast cancer cells. PPNO treatment also induced significant nitrosation of topo IIα protein in these human tumor cells. These events, taken together, caused a significant resistance to etoposide in both cell lines. However, PPNO had no effect on doxorubicin-induced cleavable complex formation, or doxorubicin cytotoxicity in these cell lines. CONCLUSION: Inhibition of topo II function by NO/NO-derived species induces significant resistance to etoposide, without affecting doxorubicin cytotoxicity in human tumor cells. GENERAL SIGNIFICANCE: As tumors express inducible nitric oxide synthase and generate significant amounts of NO, modulation of topo II functions by NO/NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , DNA Topoisomerases Tipo II/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Etoposídeo/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Inibidores da Topoisomerase II/farmacologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Catálise , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , DNA/química , DNA/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Estabilidade Enzimática , Feminino , Células HT29 , Humanos , Células MCF-7 , Conformação de Ácido Nucleico , Conformação Proteica
4.
Chem Res Toxicol ; 27(4): 674-82, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24502259

RESUMO

Metal ion-catalyzed oxidation of hydrazine and its derivatives leads to the formation of the hydrazyl radical and subsequently to oxy-radicals in the presence of molecular oxygen. Here, we have examined the role of Cu(2+)-catalyzed oxidation of hydralazine in the induction of DNA damage. Neither 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) nor dimethyl sulfoxide (DMSO) was effective in inhibiting hydralazine-Cu(2+)-induced DNA damage. Singlet oxygen did not appear to participate in this DNA cleavage. The one-electron oxidation of hydralazine also leads to the formation of DNA radicals as confirmed by immuno-spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide. Electron spin resonance (ESR) and spin-trapping studies further confirmed the formation of DNA radicals; predominantly, 2'-deoxyadenosine radical adducts were detected, while some radicals were also detected with other nucleosides. Our results suggest that free hydroxyl radicals may not be the main damaging species causing DNA cleavage and that possibly Cu-peroxide complexes, formed from Cu(+)-H2O2, are responsible for this hydralazine-Cu(2+)-induced DNA cleavage.


Assuntos
Cobre/química , Clivagem do DNA , DNA/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Hidralazina/química , Marcadores de Spin , Dano ao DNA , Oxigênio/química
5.
Cancers (Basel) ; 16(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730685

RESUMO

The blood-brain barrier is composed of both a physical barrier and an enzymatic barrier. Tight junction (TJ) proteins expressed between endothelial cells of brain capillaries provide the physical barrier to paracellular movement of ions and molecules to the brain, while luminal-facing efflux transporters enzymatically restrict the entry of blood-borne molecules from entering the brain. The expression and activity of ATP Binding Cassette transporters or "ABC" transporters in endothelial cells of the BBB and in human tumor cells are dynamically regulated by numerous signaling pathways. P-glycoprotein (P-gp), (ABCB1), is arguably the most studied transporter of the BBB, and in human cell lines. P-glycoprotein transport activity is rapidly inhibited by signaling pathways that call for the rapid production of nitric oxide (NO) from the inducible nitric oxide synthase enzyme, iNOS. This study investigated how nano-molar levels of the selective chemotherapeutic erastin affect the activity or expression of P-glycoprotein transporter in brain capillaries and in human tumor cell lines. We chose erastin because it signals to iNOS for NO production at low concentrations. Furthermore, erastin inhibits the cellular uptake of cystine through the XC- cystine/glutamate antiporter. Since previous reports indicate that NO production from iNOS can rapidly inhibit P-gp activity in tumor cells, we wondered if induction of iNOS by erastin could also rapidly reduce P-glycoprotein transport activity in brain endothelial cells and in human tumor cell lines. We show here that low concentrations of erastin (1 nM) can induce iNOS, inhibit the activity of P-glycoprotein, and reduce the intracellular uptake of cystine via the Xc- cystine/glutamate antiporter. Consistent with reduced P-glycoprotein activity in rat brain capillary endothelial cells, we show that human tumor cell lines exposed to erastin become more sensitive to cytotoxic substrates of P-glycoprotein.

6.
J Pharmacol Exp Ther ; 347(3): 607-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24049059

RESUMO

Nitric oxide (·NO) was originally identified as an innate cytotoxin. However, in tumors it can enhance resistance to chemotherapy and exacerbate cancer progression. Our previous studies indicated that (·NO/·NO-derived species react with etoposide (VP-16) in vitro and form products that show significantly reduced activity toward HL60 cells and lipopolysaccharide (LPS)-induced macrophages. Here, we further confirm the hypothesis that (÷)NO generation contributes to VP-16 resistance by examining interactions of ·NO with VP-16 in inducible nitric-oxide synthase (iNOS)-expressing human melanoma A375 cells. Inhibition of iNOS catalysis by N(6)-(1-iminoethyl)-L-lysine dihydrochloride (L-NIL) in human melanoma A375 cells reversed VP-16 resistance, leading to increased DNA damage and apoptosis. Furthermore, we found that coculturing A375 melanoma cells with LPS-induced macrophage RAW cells also significantly reduced VP-16 cytotoxicity and DNA damage in A375 cells. We also examined the interactions of (·)NO with another topoisomerase active drug, Adriamycin, in A375 cells. In contrast, to VP-16, (·)NO caused no significant modulation of cytotoxicity or Adriamycin-dependent apoptosis, suggesting that (⋅)NO does not interact with Adriamycin. Our studies support the hypothesis that (·)NO oxidative chemistry can detoxify VP-16 through direct nitrogen oxide radical attack. Our results provide insights into the pharmacology and anticancer mechanisms of VP-16 that may ultimately contribute to increased resistance, treatment failure, and induction of secondary leukemia in VP-16-treated patients.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos/farmacologia , DNA Topoisomerases/efeitos dos fármacos , Doxorrubicina/farmacologia , Etoposídeo/farmacologia , Melanoma/tratamento farmacológico , Óxido Nítrico/farmacologia , Western Blotting , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Humanos , Lisina/análogos & derivados , Lisina/farmacologia , Macrófagos/efeitos dos fármacos , Óxido Nítrico Sintase/antagonistas & inibidores
7.
Chem Res Toxicol ; 26(3): 379-87, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23402364

RESUMO

Originally identified as an innate cytotoxin, nitric oxide ((·)NO) formation in tumors can influence chemotherapy and exacerbate cancer progression. Here, we examined the hypothesis that (·)NO generation contributes to cancer cell drug resistance toward the widely used anticancer drug Etoposide (VP-16). The UV-vis spectrum of VP-16 was not changed by exposure of VP-16 to (·)NO in aqueous buffer. In contrast, reddish-orange compound(s) characteristic of o-quinone- and nitroso-VP-16 were readily generated in a hydrophobic medium (chloroform) in an oxygen-dependent manner. Similar products were also formed when the VP-16 radical, generated from VP-16 and horseradish peroxidase/H2O2, was exposed directly to (·)NO in chloroform in the presence of oxygen. Separation and spectral analysis of VP-16 reaction extracts by electron spin resonance and UV-vis indicated the generation of the phenoxy radical and the o-quinone of VP-16, as well as putative nitroxide, iminoxyl, and other nitrogen oxide intermediates. Nitric oxide products of VP-16 displayed significantly diminished topoisomerase II-dependent cleavage of DNA and cytotoxicity to human HL-60 leukemia cells. LPS-mediated induction of nitric oxide synthase in murine macrophages resulted in VP-16 resistance compared to Raw cells. Furthermore, (·)NO products derived from iNOS rapidly reacted with VP-16 leading to decreased DNA damage and cytotoxicity. Together, these observations suggest that the formation of (·)NO in tumors (associated macrophages) can contribute to VP-16 resistance via the detoxification of VP-16.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Etoposídeo/farmacologia , Neoplasias/tratamento farmacológico , Óxido Nítrico/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular , Espectroscopia de Ressonância de Spin Eletrônica , Etoposídeo/química , Etoposídeo/metabolismo , Células HL-60 , Humanos , Camundongos , Neoplasias/metabolismo , Óxido Nítrico/química , Espectrofotometria Ultravioleta
8.
Cells ; 12(12)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37371096

RESUMO

Our recent studies show that the treatment of human ovarian tumor cells with NCX4040 results in significant depletions of cellular glutathione, the formation of reactive oxygen/nitrogen species and cell death. NCX4040 is also cytotoxic to several human colorectal cancer (CRC) cells in vitro and in vivo. Here, we examined the ferroptosis-dependent mechanism(s) of cytotoxicity of NCX4040 in HT-29 and K-RAS mutant HCT 116 colon cell lines. Ferroptosis is characterized by the accumulation of reactive oxygen species (ROS) within the cell, leading to an iron-dependent oxidative stress-mediated cell death. However, its relevance in the mechanism of NCX4040 cytotoxicity in CRCs is not known. We found that NCX4040 generates ROS in CRC cells without any depletion of cellular GSH. Combinations of NCX4040 with erastin (ER) or RSL3 (RAS-selective lethal 3), known inducers of ferroptosis, enhanced CRC death. In contrast, ferrostatin-1, an inhibitor of ferroptosis, significantly inhibited NCX4040-induced cell death. Treatment of CRC cells with NCX4040 resulted in the induction of lipid peroxidation in a dose- and time-dependent manner. NCX4040 treatment induced several genes related to ferroptosis (e.g., CHAC1, GPX4 and NOX4) in both cell lines. Metabolomic studies also indicated significant increases in both lipid and energy metabolism following the drug treatment in HT-29 and HCT 116 cells. These observations strongly suggest that NCX4040 causes the ferroptosis-mediated cell death of CRC cells. Furthermore, combinations of NCX4040 and ER or RSL3 may contribute significantly to the treatment of CRC, including those that are difficult to treat due to the presence of Ras mutations in the clinic. NCX4040-induced ferroptosis may also be a dynamic form of cell death for the treatment of other cancers.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Doadores de Óxido Nítrico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Carbolinas/farmacologia , Morte Celular , Glutationa/metabolismo , Neoplasias Colorretais/tratamento farmacológico
9.
Cancers (Basel) ; 15(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36612280

RESUMO

The nitric oxide donor, NCX4040 is a non-steroidal anti-inflammatory-NO donor and has been shown to be extremely cytotoxic to a number of human tumors, including ovarian tumors cells. We have found that NCX4040 is cytotoxic against both OVCAR-8 and its adriamycin-selected OVCAR-8 variant (NCI/ADR-RES) tumor cell lines. While the mechanism of action of NCX4040 is not entirely clear, we as well as others have shown that NCX4040 generates reactive oxygen species (ROS) and induces DNA damage in tumor cells. Recently, we have reported that NCX4040 treatment resulted in a significant depletion of cellular glutathione, and formation of both reactive oxygen and nitrogen species (ROS/RNS), resulting in oxidative stress in these tumor cells. Furthermore, our results indicated that more ROS/RNS were generated in OVCAR-8 cells than in NCI/ADR-RES cells due to increased activities of superoxide dismutase (SOD), glutathione peroxidase and transferases expressed in NCI/ADR-RES cells. Further studies suggested that NCX4040-induced cell death may be mediated by peroxynitrite formed from NCX4040 in cells. In this study we used microarray analysis following NCX4040 treatment of both OVCAR-8 and its ADR-resistant variant to identify various molecular pathways involved in NCX4040-induced cell death. Here, we report that NCX4040 treatment resulted in the differential induction of oxidative stress genes, inflammatory response genes (TNF, IL-1, IL-6 and COX2), DNA damage response and MAP kinase response genes. A mechanism of tumor cell death is proposed based on our findings where oxidative stress is induced by NCX4040 from simultaneous induction of NOX4, TNF-α and CHAC1 in tumor cell death.

10.
Cancers (Basel) ; 13(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918289

RESUMO

The emergence of multidrug resistance (MDR) in the clinic is a significant problem for a successful treatment of human cancers. Overexpression of various ABC transporters (P-gp, BCRP and MRP's), which remove anticancer drugs in an ATP-dependent manner, is linked to the emergence of MDR. Attempts to modulate MDR have not been very successful in the clinic. Furthermore, no single agent has been found to significantly inhibit their functions to overcome clinical drug resistance. We have previously shown that nitric oxide (●NO) inhibits ATPase functions of ABC transporters, causing reversal of resistance to clinically active anticancer drugs. In this study, we have used cytotoxicity and molecular docking studies to show that NCX4040, a nitric oxide donor related to aspirin, inhibited the functions of ATPase which resulted in significant reversal of resistance to both adriamycin and topotecan in P-gp- and BCRP-expressing human cancer cell lines, respectively. We also used several other cytotoxic nitric oxide donors, e.g., molsidomine and S-nitroso glutathione; however, both P-gp- and BCRP-expressing cells were found to be highly resistant to these NO-donors. Molecular docking studies showed that NCX4040 binds to the nucleotide binding domains of the ATPase and interferes with further binding of ATP, resulting in decreased activities of these transporters. Our results are extremely promising and suggest that nitric oxide and other reactive species delivered to drug resistant tumor cells by well-designed nitric oxide donors could be useful in sensitizing anticancer drugs in multidrug resistant tumors expressing various ABC transporters.

11.
Front Genet ; 11: 775, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765594

RESUMO

Topotecan is a clinically active anticancer agent for the management of various human tumors. While the principal mechanism of tumor cell killing by topotecan is due to its interactions with topoisomerase I and formation of DNA double-strand breaks, recent studies suggest that mechanisms involving generation of reactive free radicals and induction of oxidative stress may play a significant role in topotecan-dependent tumor cell death. We have shown that topotecan generates a topotecan radical following one-electron oxidation by a peroxidase-hydrogen peroxide system which reacts with reduced glutathione and cysteine, forming the glutathiyl and cysteinyl radicals, respectively. While little is known how these events are involved in topotecan-induced tumor cell death, we have now examined the effects of topotecan short (1 h) and long (24 h) exposure on global gene expression patterns using gene expression microarray analysis in human breast MCF-7 cancer cells, a wild-type p53 containing cell line. We show here that topotecan treatment significantly down-regulated estrogen receptor alpha (ERα/ESR1) and antiapoptotic BCL2 genes in addition to many other p53-regulated genes. Furthermore, 8-oxoguanine DNA glycosylase (OGG1), ferredoxin reductase (FDXR), methionine sulfoxide reductase (MSR), glutathione peroxidases (GPx), and glutathione reductase (GSR) genes were also differentially expressed by topotecan treatment. The differential expression of these genes was observed in a wild-type p53-containing breast ZR-75-1 tumor cell line following topotecan treatment. The involvement of reactive oxygen free radical sensor genes, the oxidative DNA damage (OGG1) repair gene and induction of pro-apoptotic genes suggest that reactive free radical species play a role in topotecan-induced tumor cell death.

12.
Biomed Pharmacother ; 120: 109468, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31605952

RESUMO

Development of resistance to chemotherapy drugs is a significant problem in treating human malignancies in the clinic. Overexpression of ABC transporter proteins, including P-170 glycoprotein (P-gp), and breast cancer resistance protein (BCRP, ABCG2) have been implicated in this multi-drug resistance (MDR). These ABC transporters are ATP-dependent efflux proteins. We have recently shown that nitric oxide (NO) inhibits the ATPase activities of P-gp, resulting in a significant enhancement of drug accumulation and the reversal of multi-drug resistance in NCI/ADR-RES cells, a P-gp-overexpressing human MDR cell line. In this study, we used [O2-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)-piperazin-1 yl]-diazene-1-ium-1-2-diolate] (JS-K), a tumor-specific NO-donor to study the reversal of drug resistance in both P-gp- and BCRP-overexpressing human tumor cells. We report here that while JS-K was extremely effective in reversing adriamycin resistance in the P-gp-overexpressing tumor cells (NCI/ADR-RES); it was significantly resistant to BCRP-overexpressing (MCF-7/MX) tumor cells, suggesting that JS-K may be a substrate for BCRP. Using another NO-donor (DETNO), we show that NO directly inhibits the ATP activities of BCRP, inducing significant increases in the accumulations of both Hoechst 33342 dye and topotecan, substrates for BCRP. Furthermore, NO treatment significantly reversed topotecan and mitoxantrone resistance to MCF-7/MX tumor cells. Molecular docking studies indicated that while DETNO and JS-K bind to ATP binding site in both ABC proteins, binding score was significantly reduced, compared to the ATP binding. Our results indicate that appropriately designed NO donors may find success in reversing multidrug resistance in the clinic.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Compostos Azo/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Óxido Nítrico/farmacologia , Piperazinas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Compostos Azo/química , Linhagem Celular Tumoral , Sobrevivência Celular , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Humanos , Mitoxantrona/química , Mitoxantrona/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Nitrosos/química , Compostos Nitrosos/farmacologia , Piperazinas/química , Topotecan/química , Topotecan/farmacologia
13.
Biochim Biophys Acta Gen Subj ; 1862(12): 2806-2814, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30251669

RESUMO

BACKGROUND: Development of resistance to chemotherapy drugs is a significant problem in treating human malignancies in the clinic. Overexpression of drug efflux proteins, including P-170 glycoprotein (P-gp), an ATP-dependent efflux protein, is one of the main mechanisms responsible for multi-drug resistance (MDR). Because our previous studies have shown that nitric oxide (˙NO) or its related species inhibit the ATPase activities of topoisomerase II, we hypothesized that ˙NO should also inhibit the ATPase activity of P-gp and increase drug accumulation in MDR cells, causing a reversal of drug resistance. RESULTS: Cytotoxicity and cellular accumulation studies showed that ˙NO significantly inhibited the ATPase activity of P-gp in isolated membranes and in NCI/ADR-RES tumor cells, causing an increase in drug accumulation and reversals of adriamycin and taxol resistance in the MDR cells. While ˙NO had no effects on topoisomerase II-induced, adriamycin-dependent DNA cleavage complex formation, it significantly inhibited adriamycin-induced DNA double-strand breaks. Electron spin resonance studies showed an increase in adriamycin-dependent hydroxyl radical formation in the presence of an NO-donor. CONCLUSIONS: The reversal of drug resistance is due to inhibition of the ATPase activity by ˙NO, resulting in enhancement of the drug accumulation in the MDR cells. Furthermore, DNA damage was not responsible for this reversal of adriamycin resistance. However, formation of adriamycin-dependent toxic free radical species and subsequent cellular damage may be responsible for the increased cytotoxicity of adriamycin by ˙NO in NCI/ADR-RES cells. GENERAL SIGNIFICANCE: Appropriately designed NO donors would be ideal for the treatment of P-gp-overexpressing tumors in the clinic.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Óxido Nítrico/metabolismo , Paclitaxel/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Microscopia Confocal
14.
Biochem Biophys Rep ; 10: 252-259, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955753

RESUMO

BACKGROUND: Topoisomerase poisons are important drugs for the management of human malignancies. Nitric oxide (•NO), a physiological signaling molecule, induces nitrosylation (or nitrosation) of many cellular proteins containing cysteine thiol groups, altering their cellular functions. Topoisomerases contain several thiol groups which are important for their activity and are also targets for nitrosation by nitric oxide. METHODS: Here, we have evaluated the roles of • NO/ • NO-derived species in the stability and activity of topo II (α and ß) both in vitro and in human MCF-7 breast tumor cells. Furthermore, we have examined the effects of • NO on the ATPase activity of topo II. RESULTS: Treatment of purified topo IIα and ß with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of the catalytic activity of topo II. Furthermore, PPNO significantly inhibited topo II-dependent ATP hydrolysis. • NO-induced inhibition of these topo II (α and ß) functions resulted in a decrease in cleavable complex formation in MCF-7 cells in the presence of m-AMSA and XK469 and induced significant resistance to both drugs in MCF-7 cells. CONCLUSION: PPNO treatment resulted in the nitrosation of the topo II protein in MCF-7 cancer cells and inhibited both catalytic-, and ATPase activities of topo II. Furthermore, PPNO significantly affected the DNA damage and cytotoxicity of m-AMSA and XK469 in MCF-7 tumor cells. GENERAL SIGNIFICANCE: As tumors express nitric oxide synthase and generate • NO, inhibition of topo II functions by • NO/ • NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.

15.
Free Radic Biol Med ; 113: 406-412, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29079526

RESUMO

Topotecan, a derivative of camptothecin, is an important anticancer drug for the treatment of various human cancers in the clinic. While the principal mechanism of tumor cell killing by topotecan is due to its interactions with topoisomerase I, other mechanisms, e.g., oxidative stress induced by reactive free radicals, have also been proposed. However, very little is known about how topotecan induces free radical-dependent oxidative stress in tumor cells. In this report we describe the formation of a topotecan radical, catalyzed by a peroxidase-hydrogen peroxide system. While this topotecan radical did not undergo oxidation-reduction with molecular O2, it rapidly reacted with reduced glutathione and cysteine, regenerating topotecan and forming the corresponding glutathiyl and cysteinyl radicals. Ascorbic acid, which produces hydrogen peroxide in tumor cells, significantly increased topotecan cytotoxicity in MCF-7 tumor cells. The presence of ascorbic acid also increased both topoisomerase I-dependent topotecan-induced DNA cleavage complex formation and topotecan-induced DNA double-strand breaks, suggesting that ascorbic acid participated in enhancing DNA damage induced by topotecan and that the enhanced DNA damage is responsible for the synergistic interactions of topotecan and ascorbic acid. Cell death by topotecan and the combination of topotecan and ascorbic acid was predominantly due to necrosis of MCF-7 breast tumor cells.


Assuntos
Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Necrose/metabolismo , Espécies Reativas de Oxigênio/agonistas , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Antineoplásicos/química , Ácido Ascórbico/química , Morte Celular/efeitos dos fármacos , Cisteína/química , Cisteína/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Combinação de Medicamentos , Sinergismo Farmacológico , Expressão Gênica , Glutationa/química , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Necrose/induzido quimicamente , Oxirredução , Peroxidase/química , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inibidores da Topoisomerase I/química , Topotecan/química
16.
J Cancer Sci Ther ; 8: 244-251, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31844487

RESUMO

A successful treatment of cancers in the clinic has been difficult to achieve because of the emergence of drug resistant tumor cells. While various approaches have been tried to overcome multi-drug resistance, it has remained a major road block in achieving complete success in the clinic. Extensive research has identified various mechanisms, including overexpression of P-glycoprotein 170, modifications in activating or detoxification enzymes (phase I and II enzymes), and mutation and/or decreases in target enzymes in cancer cells. However, nitric oxide and/or nitric oxide-related species have not been considered an important player in cancer treatment and or drug resistance. Here, we examine the significance of nitric oxide in the treatment and resistance mechanisms of various anticancer drugs. Furthermore, we describe the significance of recently reported effects of nitric oxide on topoisomerases and the development of resistance to topoisomerase-poisons in tumor cells.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31171989

RESUMO

The antitumor drugs doxorubicin and etoposide, a phodophyllotoxin derivative, are clinically active for the treatment of human malignancies. Because of their extreme effectiveness in the clinic, their modes of actions have been the subject of intense research for over several decades both in the laboratory and in the clinic. It has been found that both doxorubicin and etoposide (VP-16) act on topoisomerase II, induce DNA cleavage, and form double-strand breaks, causing tumor cell death. However, both of these drugs also undergo extensive metabolism in tumor cells and in vivo to various reactive intermediates that bind covalently to cellular DNA and proteins. Moreover, both drugs are metabolized to reactive free radicals that induce lipid peroxidation and DNA damage. However, the role of drug activation in the mechanism of cytotoxicity remains poorly defined. In this review, we critically evaluate the significance of metabolic activation of doxorubicin and etoposide in the mechanism of tumor cytotoxicity.

18.
PLoS One ; 10(11): e0141897, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26540186

RESUMO

Camptothecin (CPT), a topoisomerase I poison, is an important drug for the treatment of solid tumors in the clinic. Nitric oxide (·NO), a physiological signaling molecule, is involved in many cellular functions, including cell proliferation, survival and death. We have previously shown that ·NO plays a significant role in the detoxification of etoposide (VP-16), a topoisomerase II poison in vitro and in human melanoma cells. ·NO/·NO-derived species are reported to modulate activity of several important cellular proteins. As topoisomerases contain a number of free sulfhydryl groups which may be targets of ·NO/·NO-derived species, we have investigated the roles of ·NO/·NO-derived species in the stability and activity of topo I. Here we show that ·NO/·NO-derived species induces a significant down-regulation of topoisomerase I protein via the ubiquitin/26S proteasome pathway in human colon (HT-29) and breast (MCF-7) cancer cell lines. Importantly, ·NO treatment induced a significant resistance to CPT only in MCF-7 cells. This resistance to CPT did not result from loss of topoisomerase I activity as there were no differences in topoisomerase I-induced DNA cleavage in vitro or in tumor cells, but resulted from the stabilization/induction of bcl2 protein. This up-regulation of bcl2 protein in MCF-7 cells was wtp53 dependent as pifithrine-α, a small molecule inhibitor of wtp53 function, completely reversed CPT resistance, suggesting that wtp53 and bcl2 proteins played important roles in CPT resistance. Because tumors in vivo are heterogeneous and contaminated by infiltrating macrophages, ·NO-induced down-regulation of topoisomerase I protein combined with bcl2 protein stabilization could render certain tumors highly resistant to CPT and drugs derived from it in the clinic.


Assuntos
Neoplasias da Mama/genética , Camptotecina/farmacologia , DNA Topoisomerases Tipo I/genética , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Óxido Nítrico/metabolismo , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Etoposídeo/farmacologia , Células HT29 , Humanos , Células MCF-7 , Inibidores da Topoisomerase I/farmacologia , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-31171988

RESUMO

Hydrazine derivatives are environmental and food pollutants but are also important because of their use in medicine for the treatment of tuberculosis and cancer. However, hydrazines also pose significant health risks to humans as they are mutagenic and carcinogenic. This review examines various metabolic pathways (enzymatic and non-enzymatic) of hydrazines for the formation of reactive species that bind to cellular macromolecules and lead to cellular dysfunction. It is believed that this biotransformation is responsible for the pharmacology and pathophysiology of hydrazine derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA