Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 93(1): 207-216, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35449394

RESUMO

BACKGROUND: We hypothesised that the clinical characteristics of hospitalised children and young people (CYP) with SARS-CoV-2 in the UK second wave (W2) would differ from the first wave (W1) due to the alpha variant (B.1.1.7), school reopening and relaxation of shielding. METHODS: Prospective multicentre observational cohort study of patients <19 years hospitalised in the UK with SARS-CoV-2 between 17/01/20 and 31/01/21. Clinical characteristics were compared between W1 and W2 (W1 = 17/01/20-31/07/20,W2 = 01/08/20-31/01/21). RESULTS: 2044 CYP < 19 years from 187 hospitals. 427/2044 (20.6%) with asymptomatic/incidental SARS-CoV-2 were excluded from main analysis. 16.0% (248/1548) of symptomatic CYP were admitted to critical care and 0.8% (12/1504) died. 5.6% (91/1617) of symptomatic CYP had Multisystem Inflammatory Syndrome in Children (MIS-C). After excluding CYP with MIS-C, patients in W2 had lower Paediatric Early Warning Scores (PEWS, composite vital sign score), lower antibiotic use and less respiratory and cardiovascular support than W1. The proportion of CYP admitted to critical care was unchanged. 58.0% (938/1617) of symptomatic CYP had no reported comorbidity. Patients without co-morbidities were younger (42.4%, 398/938, <1 year), had lower PEWS, shorter length of stay and less respiratory support. CONCLUSIONS: We found no evidence of increased disease severity in W2 vs W1. A large proportion of hospitalised CYP had no comorbidity. IMPACT: No evidence of increased severity of COVID-19 admissions amongst children and young people (CYP) in the second vs first wave in the UK, despite changes in variant, relaxation of shielding and return to face-to-face schooling. CYP with no comorbidities made up a significant proportion of those admitted. However, they had shorter length of stays and lower treatment requirements than CYP with comorbidities once those with MIS-C were excluded. At least 20% of CYP admitted in this cohort had asymptomatic/incidental SARS-CoV-2 infection. This paper was presented to SAGE to inform CYP vaccination policy in the UK.


Assuntos
COVID-19 , Infecções por Coronavirus , Humanos , Criança , Adolescente , SARS-CoV-2 , COVID-19/epidemiologia , Pandemias , Estudos Prospectivos , Reino Unido/epidemiologia
2.
Cochrane Database Syst Rev ; 3: CD012040, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36866921

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a common, life-shortening, genetic disorder in populations of Northern European descent caused by the mutation of a single gene that codes for the production of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. This protein coordinates the transport of salt (and bicarbonate) across cell surfaces, and the mutation most notably affects the airways. In the lungs of people with CF, the defective protein compromises mucociliary clearance and makes the airway prone to chronic infection and inflammation, damaging the structure of the airways and eventually leading to respiratory failure. In addition, abnormalities in the truncated CFTR protein lead to other systemic complications, including malnutrition, diabetes and subfertility. Five classes of mutation have been described, depending on the impact of the mutation on the processing of the CFTR protein in the cell. In class I mutations, premature termination codons prevent the production of any functional protein, resulting in severe CF. Therapies targeting class I mutations aim to enable the normal cellular mechanism to read through the mutation, potentially restoring the production of the CFTR protein. This could, in turn, normalise salt transport in the cells and decrease the chronic infection and inflammation that characterises lung disease in people with CF. This is an update of a previously published review. OBJECTIVES: To evaluate the benefits and harms of ataluren and similar compounds on clinically important outcomes in people with CF with class I mutations (premature termination codons). SEARCH METHODS: We searched the Cochrane Cystic Fibrosis Trials Register, which is compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles. The last search of the Cochrane Cystic Fibrosis Trials Register was conducted on 7 March 2022. We searched clinical trial registries maintained by the European Medicines Agency, the US National Institutes of Health and the World Health Organization. The last search of the clinical trials registries was conducted on 4 October 2022. SELECTION CRITERIA: Randomised controlled trials (RCTs) of parallel design comparing ataluren and similar compounds (specific therapies for class I mutations) with placebo in people with CF who have at least one class I mutation. DATA COLLECTION AND ANALYSIS: For the included trials, the review authors independently extracted data, assessed the risk of bias and evaluated the certainty of the evidence using GRADE; trial authors were contacted for additional data. MAIN RESULTS: Our searches identified 56 references to 20 trials; of these, 18 trials were excluded. Both the included parallel RCTs compared ataluren to placebo for 48 weeks in 517 participants (males and females; age range six to 53 years) with CF who had at least one nonsense mutation (a type of class I mutation). The certainty of evidence and risk of bias assessments for the trials were moderate overall. Random sequence generation, allocation concealment and blinding of trial personnel were well documented; participant blinding was less clear. Some participant data were excluded from the analysis in one trial that also had a high risk of bias for selective outcome reporting. PTC Therapeutics Incorporated sponsored both trials with grant support from the Cystic Fibrosis Foundation, the US Food and Drug Administration's Office of Orphan Products Development and the National Institutes of Health. The trials reported no difference between treatment groups in terms of quality of life, and no improvement in respiratory function measures. Ataluren was associated with a higher rate of episodes of renal impairment (risk ratio 12.81, 95% confidence interval 2.46 to 66.65; P = 0.002; I2 = 0%; 2 trials, 517 participants). The trials reported no treatment effect for ataluren for the review's secondary outcomes of pulmonary exacerbation, computed tomography score, weight, body mass index and sweat chloride. No deaths were reported in the trials. The earlier trial performed a post hoc subgroup analysis of participants not receiving concomitant chronic inhaled tobramycin (n = 146). This analysis demonstrated favourable results for ataluren (n = 72) for the relative change in forced expiratory volume in one second (FEV1) per cent (%) predicted and pulmonary exacerbation rate. The later trial aimed to prospectively assess the efficacy of ataluren in participants not concomitantly receiving inhaled aminoglycosides, and found no difference between ataluren and placebo in FEV1 % predicted and pulmonary exacerbation rate.  AUTHORS' CONCLUSIONS: There is currently insufficient evidence to determine the effect of ataluren as a therapy for people with CF with class I mutations. One trial reported favourable results for ataluren in a post hoc subgroup analysis of participants not receiving chronic inhaled aminoglycosides, but these were not reproduced in the later trial, suggesting that the earlier results may have occurred by chance. Future trials should carefully assess for adverse events, notably renal impairment, and consider the possibility of drug interactions. Cross-over trials should be avoided, given the potential for the treatment to change the natural history of CF.


Assuntos
Códon sem Sentido , Fibrose Cística , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Aminoglicosídeos , Antibacterianos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Infecção Persistente
3.
Cochrane Database Syst Rev ; 11: CD010966, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983082

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a common life-shortening genetic condition caused by a variant in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. A class II CFTR variant F508del is the commonest CF-causing variant (found in up to 90% of people with CF (pwCF)). The F508del variant lacks meaningful CFTR function - faulty protein is degraded before reaching the cell membrane, where it needs to be to effect transepithelial salt transport. Corrective therapy could benefit many pwCF. This review evaluates single correctors (monotherapy) and any combination of correctors (most commonly lumacaftor, tezacaftor, elexacaftor, VX-659, VX-440 or VX-152) and a potentiator (e.g. ivacaftor) (dual and triple therapies). OBJECTIVES: To evaluate the effects of CFTR correctors (with or without potentiators) on clinically important benefits and harms in pwCF of any age with class II CFTR mutations (most commonly F508del). SEARCH METHODS: We searched the Cochrane CF Trials Register (28 November 2022), reference lists of relevant articles and online trials registries (3 December 2022). SELECTION CRITERIA: Randomised controlled trials (RCTs) (parallel design) comparing CFTR correctors to control in pwCF with class II mutations. DATA COLLECTION AND ANALYSIS: Two authors independently extracted data, assessed risk of bias and judged evidence certainty (GRADE); we contacted investigators for additional data. MAIN RESULTS: We included 34 RCTs (4781 participants), lasting between 1 day and 48 weeks; an extension of two lumacaftor-ivacaftor studies provided additional 96-week safety data (1029 participants). We assessed eight monotherapy RCTs (344 participants) (4PBA, CPX, lumacaftor, cavosonstat and FDL169), 16 dual-therapy RCTs (2627 participants) (lumacaftor-ivacaftor or tezacaftor-ivacaftor) and 11 triple-therapy RCTs (1804 participants) (elexacaftor-tezacaftor-ivacaftor/deutivacaftor; VX-659-tezacaftor-ivacaftor/deutivacaftor; VX-440-tezacaftor-ivacaftor; VX-152-tezacaftor-ivacaftor). Participants in 21 RCTs had the genotype F508del/F508del, in seven RCTs they had F508del/minimal function (MF), in one RCT F508del/gating genotypes, in one RCT either F508del/F508del genotypes or F508del/residual function genotypes, in one RCT either F508del/gating or F508del/residual function genotypes, and in three RCTs either F508del/F508del genotypes or F508del/MF genotypes. Risk of bias judgements varied across different comparisons. Results from 16 RCTs may not be applicable to all pwCF due to age limits (e.g. adults only) or non-standard designs (converting from monotherapy to combination therapy). Monotherapy Investigators reported no deaths or clinically relevant improvements in quality of life (QoL). There was insufficient evidence to determine effects on lung function. No placebo-controlled monotherapy RCT demonstrated differences in mild, moderate or severe adverse effects (AEs); the clinical relevance of these events is difficult to assess due to their variety and few participants (all F508del/F508del). Dual therapy In a tezacaftor-ivacaftor group there was one death (deemed unrelated to the study drug). QoL scores (respiratory domain) favoured both lumacaftor-ivacaftor and tezacaftor-ivacaftor therapy compared to placebo at all time points (moderate-certainty evidence). At six months, relative change in forced expiratory volume in one second (FEV1) % predicted improved with all dual combination therapies compared to placebo (high- to moderate-certainty evidence). More pwCF reported early transient breathlessness with lumacaftor-ivacaftor (odds ratio (OR) 2.05, 99% confidence interval (CI) 1.10 to 3.83; I2 = 0%; 2 studies, 739 participants; high-certainty evidence). Over 120 weeks (initial study period and follow-up), systolic blood pressure rose by 5.1 mmHg and diastolic blood pressure by 4.1 mmHg with twice-daily 400 mg lumacaftor-ivacaftor (80 participants). The tezacaftor-ivacaftor RCTs did not report these adverse effects. Pulmonary exacerbation rates decreased in pwCF receiving additional therapies to ivacaftor compared to placebo (all moderate-certainty evidence): lumacaftor 600 mg (hazard ratio (HR) 0.70, 95% CI 0.57 to 0.87; I2 = 0%; 2 studies, 739 participants); lumacaftor 400 mg (HR 0.61, 95% CI 0.49 to 0.76; I2 = 0%; 2 studies, 740 participants); and tezacaftor (HR 0.64, 95% CI 0.46 to 0.89; 1 study, 506 participants). Triple therapy No study reported any deaths (high-certainty evidence). All other evidence was low- to moderate-certainty. QoL respiratory domain scores probably improved with triple therapy compared to control at six months (six studies). There was probably a greater relative and absolute change in FEV1 % predicted with triple therapy (four studies each across all combinations). The absolute change in FEV1 % predicted was probably greater for F508del/MF participants taking elexacaftor-tezacaftor-ivacaftor compared to placebo (mean difference 14.30, 95% CI 12.76 to 15.84; 1 study, 403 participants; moderate-certainty evidence), with similar results for other drug combinations and genotypes. There was little or no difference in adverse events between triple therapy and control (10 studies). No study reported time to next pulmonary exacerbation, but fewer F508del/F508del participants experienced a pulmonary exacerbation with elexacaftor-tezacaftor-ivacaftor at four weeks (OR 0.17, 99% CI 0.06 to 0.45; 1 study, 175 participants) and 24 weeks (OR 0.29, 95% CI 0.14 to 0.60; 1 study, 405 participants); similar results were seen across other triple therapy and genotype combinations. AUTHORS' CONCLUSIONS: There is insufficient evidence of clinically important effects from corrector monotherapy in pwCF with F508del/F508del. Additional data in this review reduced the evidence for efficacy of dual therapy; these agents can no longer be considered as standard therapy. Their use may be appropriate in exceptional circumstances (e.g. if triple therapy is not tolerated or due to age). Both dual therapies (lumacaftor-ivacaftor, tezacaftor-ivacaftor) result in similar small improvements in QoL and respiratory function with lower pulmonary exacerbation rates. While the effect sizes for QoL and FEV1 still favour treatment, they have reduced compared to our previous findings. Lumacaftor-ivacaftor was associated with an increase in early transient shortness of breath and longer-term increases in blood pressure (not observed for tezacaftor-ivacaftor). Tezacaftor-ivacaftor has a better safety profile, although data are lacking in children under 12 years. In this population, lumacaftor-ivacaftor had an important impact on respiratory function with no apparent immediate safety concerns, but this should be balanced against the blood pressure increase and shortness of breath seen in longer-term adult data when considering lumacaftor-ivacaftor. Data from triple therapy trials demonstrate improvements in several key outcomes, including FEV1 and QoL. There is probably little or no difference in adverse events for triple therapy (elexacaftor-tezacaftor-ivacaftor/deutivacaftor; VX-659-tezacaftor-ivacaftor/deutivacaftor; VX-440-tezacaftor-ivacaftor; VX-152-tezacaftor-ivacaftor) in pwCF with one or two F508del variants aged 12 years or older (moderate-certainty evidence). Further RCTs are required in children under 12 years and those with more severe lung disease.


Assuntos
Fibrose Cística , Adulto , Criança , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Aminofenóis/efeitos adversos , Dispneia/tratamento farmacológico , Mutação
4.
J Asthma ; 58(10): 1340-1347, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32546110

RESUMO

OBJECTIVE: Although valved spacers are the preferred method for administering metered-dose inhaler bronchodilators such as albuterol in pediatric acute asthma, their high cost and their lack of availability have limited their use, especially in low- and middle-income countries (LMICs). Because of this, it is a common practice to use home-made spacers, although a formal analysis evaluating their cost-effectiveness is lacking. Therefore, the objective of this study was to analyze the cost-effectiveness of home-made spacers compared to commercial valved spacers for delivering bronchodilator therapy in pediatric acute asthma. METHODS: A decision-analysis model was used to estimate health outcomes and costs of a simulated cohort of pediatric patients treated for acute asthma. Effectiveness parameters were obtained from a systematic review of the literature. Cost data were obtained from hospital bills and from the national manual of drug prices in Colombia. The study was carried out from the perspective of the national healthcare system in Colombia, a middle-income country (MIC). The main outcome of the model was avoidance of hospital admission. RESULTS: Base-case analysis showed that compared to commercial valved spacers, administering bronchodilators with home-made spacers results in lower overall treatment costs (US$126.75 vs. US$128.59 average cost per patient) without a significant difference in the probability of hospitalization avoided (0.8500 vs. 0.8500). CONCLUSIONS: The present study shows that in Colombia, an MIC, compared with commercial valved spacers, the use of home-made spacers for administering bronchodilator therapy is more cost-effective because it yields a similar probability of hospital admission at lower overall treatment costs.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Asma/tratamento farmacológico , Broncodilatadores/administração & dosagem , Preços Hospitalares/estatística & dados numéricos , Inaladores Dosimetrados/economia , Administração por Inalação , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Broncodilatadores/uso terapêutico , Colômbia , Análise Custo-Benefício , Países em Desenvolvimento , Desenho de Equipamento , Humanos , Método de Monte Carlo , Revisões Sistemáticas como Assunto
5.
J Asthma ; 58(12): 1597-1598, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32962456

RESUMO

During the Covid19 pandemic there has been much discussion about in-hospital procedures that may generate aerosols. One such procedure, that has led to confusion and concern, is nebulisation of children. In this paper, we discuss the evidence around whether nebulisation procedures generate aerosols, and offer strategies around nebulisation of children with asthma.


Assuntos
Asma/tratamento farmacológico , COVID-19/prevenção & controle , SARS-CoV-2 , Aerossóis , COVID-19/epidemiologia , Criança , Pessoal de Saúde , Humanos , Equipamento de Proteção Individual
6.
Cochrane Database Syst Rev ; 12: CD010966, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33331662

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a common life-shortening genetic condition caused by a variant in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. A class II CFTR variant F508del (found in up to 90% of people with CF (pwCF)) is the commonest CF-causing variant. The faulty protein is degraded before reaching the cell membrane, where it needs to be to effect transepithelial salt transport. The F508del variant lacks meaningful CFTR function and corrective therapy could benefit many pwCF. Therapies in this review include single correctors and any combination of correctors and potentiators. OBJECTIVES: To evaluate the effects of CFTR correctors (with or without potentiators) on clinically important benefits and harms in pwCF of any age with class II CFTR mutations (most commonly F508del). SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Cystic Fibrosis Trials Register, reference lists of relevant articles and online trials registries. Most recent search: 14 October 2020. SELECTION CRITERIA: Randomised controlled trials (RCTs) (parallel design) comparing CFTR correctors to control in pwCF with class II mutations. DATA COLLECTION AND ANALYSIS: Two authors independently extracted data, assessed risk of bias and evidence quality (GRADE); we contacted investigators for additional data. MAIN RESULTS: We included 19 RCTs (2959 participants), lasting between 1 day and 24 weeks; an extension of two lumacaftor-ivacaftor studies provided additional 96-week safety data (1029 participants). We assessed eight monotherapy RCTs (344 participants) (4PBA, CPX, lumacaftor, cavosonstat and FDL169), six dual-therapy RCTs (1840 participants) (lumacaftor-ivacaftor or tezacaftor-ivacaftor) and five triple-therapy RCTs (775 participants) (elexacaftor-tezacaftor-ivacaftor or VX-659-tezacaftor-ivacaftor); below we report only the data from elexacaftor-tezacaftor-ivacaftor combination which proceeded to Phase 3 trials. In 14 RCTs participants had F508del/F508del genotypes, in three RCTs F508del/minimal function (MF) genotypes and in two RCTs both genotypes. Risk of bias judgements varied across different comparisons. Results from 11 RCTs may not be applicable to all pwCF due to age limits (e.g. adults only) or non-standard design (converting from monotherapy to combination therapy). Monotherapy Investigators reported no deaths or clinically-relevant improvements in quality of life (QoL). There was insufficient evidence to determine any important effects on lung function. No placebo-controlled monotherapy RCT demonstrated differences in mild, moderate or severe adverse effects (AEs); the clinical relevance of these events is difficult to assess with their variety and small number of participants (all F508del/F508del). Dual therapy Investigators reported no deaths (moderate- to high-quality evidence). QoL scores (respiratory domain) favoured both lumacaftor-ivacaftor and tezacaftor-ivacaftor therapy compared to placebo at all time points. At six months lumacaftor 600 mg or 400 mg (both once daily) plus ivacaftor improved Cystic Fibrosis Questionnaire (CFQ) scores slightly compared with placebo (mean difference (MD) 2.62 points (95% confidence interval (CI) 0.64 to 4.59); 1061 participants; high-quality evidence). A similar effect was observed for twice-daily lumacaftor (200 mg) plus ivacaftor (250 mg), but with low-quality evidence (MD 2.50 points (95% CI 0.10 to 5.10)). The mean increase in CFQ scores with twice-daily tezacaftor (100 mg) and ivacaftor (150 mg) was approximately five points (95% CI 3.20 to 7.00; 504 participants; moderate-quality evidence). At six months, the relative change in forced expiratory volume in one second (FEV1) % predicted improved with combination therapies compared to placebo by: 5.21% with once-daily lumacaftor-ivacaftor (95% CI 3.61% to 6.80%; 504 participants; high-quality evidence); 2.40% with twice-daily lumacaftor-ivacaftor (95% CI 0.40% to 4.40%; 204 participants; low-quality evidence); and 6.80% with tezacaftor-ivacaftor (95% CI 5.30 to 8.30%; 520 participants; moderate-quality evidence). More pwCF reported early transient breathlessness with lumacaftor-ivacaftor, odds ratio 2.05 (99% CI 1.10 to 3.83; 739 participants; high-quality evidence). Over 120 weeks (initial study period and follow-up) systolic blood pressure rose by 5.1 mmHg and diastolic blood pressure by 4.1 mmHg with twice-daily 400 mg lumacaftor-ivacaftor (80 participants; high-quality evidence). The tezacaftor-ivacaftor RCTs did not report these adverse effects. Pulmonary exacerbation rates decreased in pwCF receiving additional therapies to ivacaftor compared to placebo: lumacaftor 600 mg hazard ratio (HR) 0.70 (95% CI 0.57 to 0.87; 739 participants); lumacaftor 400 mg, HR 0.61 (95% CI 0.49 to 0.76; 740 participants); and tezacaftor, HR 0.64 (95% CI, 0.46 to 0.89; 506 participants) (moderate-quality evidence). Triple therapy Three RCTs of elexacaftor to tezacaftor-ivacaftor in pwCF (aged 12 years and older with either one or two F508del variants) reported no deaths (high-quality evidence). All other evidence was graded as moderate quality. In 403 participants with F508del/minimal function (MF) elexacaftor-tezacaftor-ivacaftor improved QoL respiratory scores (MD 20.2 points (95% CI 16.2 to 24.2)) and absolute change in FEV1 (MD 14.3% predicted (95% CI 12.7 to 15.8)) compared to placebo at 24 weeks. At four weeks in 107 F508del/F508del participants, elexacaftor-tezacaftor-ivacaftor improved QoL respiratory scores (17.4 points (95% CI 11.9 to 22.9)) and absolute change in FEV1 (MD 10.0% predicted (95% CI 7.5 to 12.5)) compared to tezacaftor-ivacaftor. There was probably little or no difference in the number or severity of AEs between elexacaftor-tezacaftor-ivacaftor and placebo or control (moderate-quality evidence). In 403 F508del/F508del participants, there was a longer time to protocol-defined pulmonary exacerbation with elexacaftor-tezacaftor-ivacaftor over 24 weeks (moderate-quality evidence). AUTHORS' CONCLUSIONS: There is insufficient evidence that corrector monotherapy has clinically important effects in pwCF with F508del/F508del. Both dual therapies (lumacaftor-ivacaftor, tezacaftor-ivacaftor) result in similar improvements in QoL and respiratory function with lower pulmonary exacerbation rates. Lumacaftor-ivacaftor was associated with an increase in early transient shortness of breath and longer-term increases in blood pressure (not observed for tezacaftor-ivacaftor). Tezacaftor-ivacaftor has a better safety profile, although data are lacking in children under 12 years. In this population, lumacaftor-ivacaftor had an important impact on respiratory function with no apparent immediate safety concerns; but this should be balanced against the blood pressure increase and shortness of breath seen in longer-term adult data when considering lumacaftor-ivacaftor. There is high-quality evidence of clinical efficacy with probably little or no difference in AEs for triple (elexacaftor-tezacaftor-ivacaftor) therapy in pwCF with one or two F508del variants aged 12 years or older. Further RCTs are required in children (under 12 years) and those with more severe respiratory function.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Mutação , Adulto , Aminofenóis/uso terapêutico , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Viés , Criança , Combinação de Medicamentos , Humanos , Indóis/uso terapêutico , Fenilbutiratos/uso terapêutico , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Qualidade de Vida , Quinolinas/uso terapêutico , Quinolonas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Cochrane Database Syst Rev ; 1: CD009841, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616300

RESUMO

BACKGROUND: Cystic fibrosis (CF) is the commonest inherited life-shortening illness in white populations, caused by a mutation in the gene that codes for the cystic fibrosis transmembrane regulator protein (CFTR), which functions as a salt transporter. This mutation mainly affects the airways where excess salt absorption dehydrates the airway lining leading to impaired mucociliary clearance. Consequently, thick, sticky mucus accumulates making the airway prone to chronic infection and progressive inflammation; respiratory failure often ensues. Other complications include malnutrition, diabetes and subfertility.Increased understanding of the condition has allowed pharmaceutical companies to design mutation-specific therapies targeting the underlying molecular defect. CFTR potentiators target mutation classes III and IV and aim to normalise airway surface liquid and mucociliary clearance, which in turn impacts on the chronic infection and inflammation. This is an update of a previously published review. OBJECTIVES: To evaluate the effects of CFTR potentiators on clinically important outcomes in children and adults with CF. SEARCH METHODS: We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles, reviews and online clinical trial registries. Last search: 21 November 2018. SELECTION CRITERIA: Randomised controlled trials (RCTs) of parallel design comparing CFTR potentiators to placebo in people with CF. A separate review examines trials combining CFTR potentiators with other mutation-specific therapies. DATA COLLECTION AND ANALYSIS: The authors independently extracted data, assessed the risk of bias in included trials and used GRADE to assess evidence quality. Trial authors were contacted for additional data. MAIN RESULTS: We included five RCTs (447 participants with different mutations) lasting from 28 days to 48 weeks, all assessing the CFTR potentiator ivacaftor. The quality of the evidence was moderate to low, mainly due to risk of bias (incomplete outcome data and selective reporting) and imprecision of results, particularly where few individuals experienced adverse events. Trial design was generally well-documented. All trials were industry-sponsored and supported by other non-pharmaceutical funding bodies.F508del (class II) (140 participants)One 16-week trial reported no deaths, or changes in quality of life (QoL) or lung function (either relative or absolute change in forced expiratory volume in one second (FEV1) (moderate-quality evidence). Pulmonary exacerbations and cough were the most reported adverse events in ivacaftor and placebo groups, but there was no difference between groups (low-quality evidence); there was also no difference between groups in participants interrupting or discontinuing treatment (low-quality evidence). Number of days until the first exacerbation was not reported, but there was no difference between groups in how many participants developed pulmonary exacerbations. There was also no difference in weight. Sweat chloride concentration decreased, mean difference (MD) -2.90 mmol/L (95% confidence interval (CI) -5.60 to -0.20).G551D (class III) (238 participants)The 28-day phase 2 trial (19 participants) and two 48-week phase 3 trials (adult trial (167 adults), paediatric trial (52 children)) reported no deaths. QoL scores (respiratory domain) were higher with ivacaftor in the adult trial at 24 weeks, MD 8.10 (95% CI 4.77 to 11.43) and 48 weeks, MD 8.60 (95% CI 5.27 to 11.93 (moderate-quality evidence). The adult trial reported a higher relative change in FEV1 with ivacaftor at 24 weeks, MD 16.90% (95% CI 13.60 to 20.20) and 48 weeks, MD 16.80% (95% CI 13.50 to 20.10); the paediatric trial reported this at 24 weeks, MD 17.4% (P < 0.0001)) (moderate-quality evidence). These trials demonstrated absolute improvements in FEV1 (% predicted) at 24 weeks, MD 10.80% (95% CI 8.91 to 12.69) and 48 weeks, MD 10.44% (95% CI 8.56 to 12.32). The phase 3 trials reported increased cough, odds ratio (OR) 0.57 (95% CI 0.33 to 1.00) and episodes of decreased pulmonary function, OR 0.29 (95% CI 0.10 to 0.82) in the placebo group; ivacaftor led to increased dizziness in adults, OR 10.55 (95% CI 1.32 to 84.47). There was no difference between groups in participants interrupting or discontinuing treatment (low-quality evidence). Fewer participants taking ivacaftor developed serious pulmonary exacerbations; adults taking ivacaftor developed fewer exacerbations (serious or not), OR 0.54 (95% CI 0.29 to 1.01). A higher proportion of participants were exacerbation-free at 24 weeks with ivacaftor (moderate-quality evidence). Ivacaftor led to a greater absolute change from baseline in FEV1 (% predicted) at 24 weeks, MD 10.80% (95% CI 8.91 to 12.69) and 48 weeks, MD 10.44% (95% CI 8.56 to 12.32); weight also increased at 24 weeks, MD 2.37 kg (95% CI 1.68 to 3.06) and 48 weeks, MD 2.75 kg (95% CI 1.74 to 3.75). Sweat chloride concentration decreased at 24 weeks, MD -48.98 mmol/L (95% CI -52.07 to -45.89) and 48 weeks, MD -49.03 mmol/L (95% CI -52.11 to -45.94).R117H (class IV) (69 participants)One 24-week trial reported no deaths. QoL scores (respiratory domain) were higher with ivacaftor at 24 weeks, MD 8.40 (95% CI 2.17 to 14.63), but no relative changes in lung function were reported (moderate-quality evidence). Pulmonary exacerbations and cough were the most reported adverse events in both groups, but there was no difference between groups; there was no difference between groups in participants interrupting or discontinuing treatment (low-quality evidence). Number of days until the first exacerbation was not reported, but there was no difference between groups in how many participants developed pulmonary exacerbations. No changes in absolute change in FEV1 or weight were reported. Sweat chloride concentration decreased, MD -24.00 mmol/L (CI 95% -24.69 to -23.31). AUTHORS' CONCLUSIONS: There is no evidence supporting the use of ivacaftor in people with the F508del mutation. Both G551D phase 3 trials demonstrated a clinically relevant impact of ivacaftor on outcomes at 24 and 48 weeks in adults and children (over six years of age) with CF. The R117H trial demonstrated an improvement in the respiratory QoL score, but no improvement in respiratory function.As new mutation-specific therapies emerge, it is important that trials examine outcomes relevant to people with CF and their families and that adverse events are reported robustly and consistently. Post-market surveillance is essential and ongoing health economic evaluations are required.


Assuntos
Aminofenóis/uso terapêutico , Agonistas dos Canais de Cloreto/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Mutação/genética , Quinolonas/uso terapêutico , Adulto , Fatores Etários , Aminofenóis/efeitos adversos , Criança , Agonistas dos Canais de Cloreto/efeitos adversos , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Volume Expiratório Forçado/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular/métodos , Depuração Mucociliar , Qualidade de Vida , Quinolonas/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Cochrane Database Syst Rev ; 8: CD010966, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30070364

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a common life-shortening condition caused by mutation in the gene that codes for that codes for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which functions as a salt transporter. F508del, the most common CFTR mutation that causes CF, is found in up to 80% to 90% of people with CF. In people with this mutation, a full length of protein is transcribed, but recognised as misfolded by the cell and degraded before reaching the cell membrane, where it needs to be positioned to effect transepithelial salt transport. This severe mutation is associated with no meaningful CFTR function. A corrective therapy for this mutation could positively impact on an important proportion of the CF population. OBJECTIVES: To evaluate the effects of CFTR correctors on clinically important outcomes, both benefits and harms, in children and adults with CF and class II CFTR mutations (most commonly F508del). SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Cystic Fibrosis Trials Register. We also searched reference lists of relevant articles and online trials registries. Most recent search: 24 February 2018. SELECTION CRITERIA: Randomised controlled trials (RCTs) (parallel design) comparing CFTR correctors to placebo in people with CF with class II mutations. We also included RCTs comparing CFTR correctors combined with CFTR potentiators to placebo. DATA COLLECTION AND ANALYSIS: Two authors independently extracted data, assessed risk of bias and quality of the evidence using the GRADE criteria. Study authors were contacted for additional data. MAIN RESULTS: We included 13 RCTs (2215 participants), lasting between 1 day and 24 weeks. Additional safety data from an extension study of two lumacaftor-ivacaftor studies were available at 96 weeks (1029 participants). We assessed monotherapy in seven RCTs (317 participants) (4PBA (also known as Buphenyl), CPX, lumacaftor or cavosonstat) and combination therapy in six RCTs (1898 participants) (lumacaftor-ivacaftor or tezacaftor-ivacaftor) compared to placebo. Twelve RCTs recruited individuals homozygous for F508del, one RCT recruited participants with one F508del mutation and a second mutation with residual function.Risk of bias varied in its impact on the confidence we have in our results across different comparisons. Some findings were based on single RCTs that were too small to show important effects. For five RCTs, results may not be applicable to all individuals with CF due to age limits of recruited populations (i.e. adults only, children only) or non-standard design of converting from monotherapy to combination therapy.Monotherapy versus placeboNo deaths were reported and there were no clinically relevant improvements in quality of life in any RCT. There was insufficient evidence available from individual studies to determine the effect of any of the correctors examined on lung function outcomes.No placebo-controlled study of monotherapy demonstrated a difference in mild, moderate or severe adverse effects; however, it is difficult to assess the clinical relevance of these events with the variety of events and the small number of participants.Combination therapy versus placeboNo deaths were reported during any RCT (moderate- to high-quality evidence). The quality of life scores (respiratory domain) favoured combination therapy (both lumacaftor-ivacaftor and tezacaftor-ivacaftor) compared to placebo at all time points. At six months lumacaftor (600 mg once daily or 400 mg once daily) plus ivacaftor improved Cystic Fibrosis Questionnaire (CFQ) scores by a small amount compared with placebo (mean difference (MD) 2.62 points (95% confidence interval (CI) 0.64 to 4.59); 1061 participants; high-quality evidence). A similar effect size was observed for twice-daily lumacaftor (200 mg) plus ivacaftor (250 mg) although the quality of evidence was low (MD 2.50 points (95% CI 0.10 to 5.10)). The mean increase in CFQ scores with twice-daily tezacaftor (100 mg) and ivacaftor (150 mg) was approximately five points (95% CI 3.20 to 7.00; 504 participants; moderate-quality evidence). Lung function measured by relative change in forced expiratory volume in one second (FEV1) % predicted improved with both combination therapies compared to placebo at six months, by 5.21% with once daily lumacaftor-ivacaftor (95% CI 3.61% to 6.80%; 504 participants; high-quality evidence) and by 2.40% with twice-daily lumacaftor-ivacaftor (95% CI 0.40% to 4.40%; 204 participants; low-quality evidence). One study reported an increase in FEV1 with tezacaftor-ivacaftor of 6.80% (95% CI 5.30 to 8.30%; 520 participants; moderate-quality evidence).More participants receiving the lumacaftor-ivacaftor combination reported early transient breathlessness, odds ratio 2.05 (99% CI 1.10 to 3.83; 739 participants; high-quality evidence). In addition, participants allocated to the 400 mg twice-daily dose of lumacaftor-ivacaftor experienced a rise in blood pressure over the 120-week period of the initial studies and the follow-up study of 5.1 mmHg (systolic blood pressure) and 4.1 mmHg (diastolic blood pressure) (80 participants; high-quality evidence). These adverse effects were not reported in the tezacaftor-ivacaftor studies.The rate of pulmonary exacerbations decreased for participants receiving and additional therapies to ivacaftor compared to placebo: lumacaftor 600 mg hazard ratio (HR) 0.70 (95% CI 0.57 to 0.87; 739 participants); lumacaftor 400 mg, HR 0.61 (95% CI 0.49 to 0.76; 740 participants); and tezacaftor, HR 0.64 (95% CI, 0.46 to 0.89; 506 participants) (moderate-quality evidence). AUTHORS' CONCLUSIONS: There is insufficient evidence that monotherapy with correctors has clinically important effects in people with CF who have two copies of the F508del mutation.Combination therapies (lumacaftor-ivacaftor and tezacaftor-ivacaftor) each result in similarly small improvements in clinical outcomes in people with CF; specifically improvements quality of life (moderate-quality evidence), in respiratory function (high-quality evidence) and lower pulmonary exacerbation rates (moderate-quality evidence). Lumacaftor-ivacaftor is associated with an increase in early transient shortness of breath and longer-term increases in blood pressure (high-quality evidence). These adverse effects were not observed for tezacaftor-ivacaftor. Tezacaftor-ivacaftor has a better safety profile, although data are not available for children younger than 12 years. In this age group, lumacaftor-ivacaftor had an important impact on respiratory function with no apparent immediate safety concerns, but this should be balanced against the increase in blood pressure and shortness of breath seen in longer-term data in adults when considering this combination for use in young people with CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fibrose Cística/terapia , Terapia Genética/métodos , Mutação , Adulto , Aminofenóis/uso terapêutico , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Criança , Combinação de Medicamentos , Humanos , Indóis/uso terapêutico , Fenilbutiratos/uso terapêutico , Quinolonas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Tob Control ; 26(3): 247-253, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27129981

RESUMO

OBJECTIVE: To examine consistency between cross-sectional studies of conventional and electronic cigarette use among adolescents in terms of the measurement, analysis and reporting of parameters. DESIGN: A systematic analysis of cross-sectional studies of conventional and electronic cigarette use in adolescents, to identify measured and reported parameters. DATA SOURCES: Studies examining use of electronic and conventional cigarette use in adolescents were identified by searching the SCOPUS database in August 2015. STUDY SELECTION: The selection criteria for studies were: cross-sectional studies, in English, on e-cigarette use in adolescents. Two reviewers independently selected relevant studies from the search. 60 abstracts were identified, from which 31 papers were eligible for review (23 unique studies). DATA EXTRACTION: Measured and reported parameters were identified and tabulated. These included the prevalence of cigarette and/ or electronic cigarette use, and the definitions of terms. Data were extracted independently by two reviewers. DATA SYNTHESIS: With regards basic parameters of 'ever' or 'current' use of electronic or conventional cigarettes, there were 31 unique measured parameters across 23 studies. Of 16/23 studies in which authors collected information on dual current use, prevalence was reported in 11/16, with six different definitions of 'dual use'. CONCLUSIONS: There are substantial differences in measurement and reporting of parameters across observational studies of electronic and conventional cigarette use in adolescents. These studies are at risk of reporting bias, and results are difficult to interpret. A core outcome set that should be measured and reported in all observational studies is required, using structured consensus techniques.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Fumar/epidemiologia , Produtos do Tabaco/estatística & dados numéricos , Adolescente , Viés , Humanos , Avaliação de Resultados em Cuidados de Saúde/métodos , Prevalência , Projetos de Pesquisa
10.
Cochrane Database Syst Rev ; 1: CD012040, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102546

RESUMO

BACKGROUND: Cystic fibrosis is a common life-shortening genetic disorder in the Caucasian population (less common in other ethnic groups) caused by the mutation of a single gene that codes for the production of the cystic fibrosis transmembrane conductance regulator protein. This protein coordinates the transport of salt (and bicarbonate) across cell surfaces and the mutation most notably affects the airways. In the lungs of people with cystic fibrosis, defective protein results in a dehydrated surface liquid and compromised mucociliary clearance. The resulting thick mucus makes the airway prone to chronic infection and inflammation, which consequently damages the structure of the airways, eventually leading to respiratory failure. Additionally, abnormalities in the cystic fibrosis transmembrane conductance regulator protein lead to other systemic complications including malnutrition, diabetes and subfertility.Five classes of mutation have been described, depending on the impact of the mutation on the processing of the cystic fibrosis transmembrane conductance regulator protein in the cell. In class I mutations, the presence of premature termination codons prevents the production of any functional protein resulting in a severe cystic fibrosis phenotype. Advances in the understanding of the molecular genetics of cystic fibrosis has led to the development of novel mutation-specific therapies. Therapies targeting class I mutations (premature termination codons) aim to mask the abnormal gene sequence and enable the normal cellular mechanism to read through the mutation, potentially restoring the production of the cystic fibrosis transmembrane conductance regulator protein. This could in turn make salt transport in the cells function more normally and may decrease the chronic infection and inflammation that characterises lung disease in people with cystic fibrosis. OBJECTIVES: To evaluate the benefits and harms of ataluren and similar compounds on clinically important outcomes in people with cystic fibrosis with class I mutations (premature termination codons). SEARCH METHODS: We searched the Cochrane Cystic Fibrosis Trials Register which is compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles. Last search of Group's register: 24 October 2016.We searched clinical trial registries maintained by the European Medicines Agency, the US National Institutes of Health and the WHO. Last search of clinical trials registries: 28 November 2016. SELECTION CRITERIA: Randomised controlled trials of parallel design comparing ataluren and similar compounds (specific therapies for class I mutations) with placebo in people with cystic fibrosis who have at least one class I mutation. Cross-over trials were reviewed individually to evaluate whether data from the first treatment arm could be included. We excluded trials that combined therapies for premature termination codon class I mutations with other mutation-specific therapies. DATA COLLECTION AND ANALYSIS: The authors independently assessed the risk of bias and extracted data from the included trial; they contacted trial authors for additional data. MAIN RESULTS: Our searches identified 28 references to eight trials; five trials were excluded (three were cross-over and one was not randomised and one did not have relevant outcomes), one cross-over trial is awaiting classification pending provision of data and one trial is ongoing. The included parallel randomised controlled trial compared ataluren to placebo for a duration of 48 weeks in 238 participants (age range 6 to 53 years) with cystic fibrosis who had at least one nonsense mutation (a type of class I mutation).The quality of evidence and risk of bias assessments for the trial were moderate overall. Random sequence generation, allocation concealment and blinding of trial personnel were well-documented; participant blinding was less clear. Some participant data were excluded from the analysis. The trial was assessed as high risk of bias for selective outcome reporting, especially when reporting on the trial's post hoc subgroup of participants by chronic inhaled antibiotic use.The trial was sponsored by PTC Therapeutics Incorporated with grant support by the Cystic Fibrosis Foundation, the Food and Drug Administration's Office of Orphan Products Development and the National Institutes of Health (NIH).The trial reported no significant difference between treatment groups in quality of life, assessed by the Cystic Fibrosis Questionnaire-Revised respiratory domain score and no improvement in respiratory function measures (mean difference of relative change in forced expiratory volume at one second 2.97% (95% confidence interval -0.58 to 6.52)). Ataluren was associated with a significantly higher rate of episodes of renal impairment, risk ratio 17.70 (99% confidence interval 1.28 to 244.40). The trial reported no significant treatment effect for ataluren for the review's secondary outcomes: pulmonary exacerbation; computerised tomography score; weight; body mass index; and sweat chloride. No deaths were reported in the trial.A post hoc subgroup analysis of participants not receiving chronic inhaled tobramycin (n = 146) demonstrated favourable results for ataluren (n = 72) for relative change in % predicted forced expiratory volume at one second and pulmonary exacerbation rate. Participants receiving chronic inhaled tobramycin appeared to have a reduced rate of pulmonary exacerbation compared to those not receiving chronic inhaled tobramycin. This drug interaction was not anticipated and may affect the interpretation of the trial results. AUTHORS' CONCLUSIONS: There is currently insufficient evidence to determine the effect of ataluren as a therapy for people with cystic fibrosis with class I mutations. Future trials should carefully assess for adverse events, notably renal impairment and consider the possibility of drug interactions. Cross-over trials should be avoided given the potential for the treatment to change the natural history of cystic fibrosis.


Assuntos
Códon sem Sentido/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Oxidiazóis/uso terapêutico , Adolescente , Adulto , Antibacterianos/uso terapêutico , Criança , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxidiazóis/efeitos adversos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Tobramicina/uso terapêutico
13.
Cochrane Database Syst Rev ; (3): CD009841, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25811419

RESUMO

BACKGROUND: Cystic fibrosis is the most common inherited life-shortening illness in Caucasians and caused by a mutation in the gene that codes for the cystic fibrosis transmembrane regulator protein (CFTR), which functions as a salt transporter. This mutation most notably affects the airways of people with cystic fibrosis. Excess salt absorption by defective CFTR dehydrates the airway lining and leads to defective mucociliary clearance. Consequent accumulation of thick, sticky mucus makes the airway prone to chronic infection and progressive inflammation; respiratory failure often ensues. Additionally, abnormalities with CFTR lead to systemic complications like malnutrition, diabetes and subfertility.Since the discovery of the causative gene, our understanding of the structure and function of CFTR and the impact of different mutations has increased and allowed pharmaceutical companies to design new mutation-specific therapies targeting the underlying molecular defect. Therapies targeting mutation classes III and IV (CFTR potentiators) aim to normalise airway surface liquid and help re-establish mucociliary clearance, which then has a beneficial impact on the chronic infection and inflammation that characterizes lung disease in people with cystic fibrosis. These therapies may also affect other mutations. OBJECTIVES: To evaluate the effects of CFTR potentiators on clinically important outcomes in children and adults with cystic fibrosis. SEARCH METHODS: We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews. Last search: 05 March 2015.We searched the EU Clinical Trials Register, clinicaltrials.gov (US Clinical Trials Register) and the International Clinical Trials Registry Platform (ICTRP). Last search of clinical trial registries: 06 February 2014. SELECTION CRITERIA: Randomised controlled trials of parallel design comparing CFTR potentiators to placebo in people with cystic fibrosis. In a post hoc change we excluded trials combining CFTR potentiators with other mutation-specific therapies. These will be considered in a separate review. DATA COLLECTION AND ANALYSIS: The authors independently extracted data and assessed the risk of bias in included trials; they contacted trial authors for additional data. Meta-analyses were undertaken on outcomes at a number of time points. MAIN RESULTS: We included four randomised controlled trials (n = 378), lasting from 28 days to 48 weeks, comparing the potentiator ivacaftor to placebo. Trials differed in terms of design and participant eligibility criteria, which limited the meta-analyses. The phase 2 trial (n = 19) and two phase 3 trials (adult trial (n = 167), paediatric trial (n = 52)), recruited participants with the G551D mutation (class III). The fourth trial (n = 140) enrolled participants homozygous for the ΔF508 mutation (class II).Risks of bias in the trials were moderate. Random sequence generation, allocation concealment and blinding of trial personnel were well-documented. Participant blinding was less clear throughout all trials; in three trials, some participant data were excluded from the analysis. Selective outcome reporting was apparent in three trials. All trials were sponsored by industry and supported by other non-pharmaceutical funding bodies.No trial reported any deaths. Significantly higher quality of life scores in the respiratory domain were reported by the adult phase 3 G551D trial at 24 weeks, mean difference 8.10 (95% confidence interval (CI) 4.77 to 11.43) and 48 weeks, mean difference 8.60 (95% CI 5.27 to 11.93); but not by the paediatric phase 3 G551D trial. The adult phase 3 G551D trial reported improvements in relative change from baseline in forced expiratory volume at one second at 24 weeks, mean difference 16.90% (95% CI 13.60 to 20.20) and 48 weeks, mean difference 16.80% (95% CI 13.50 to 20.10); as did the paediatric G551D trial at 24 weeks, mean difference 17.4% (P < 0.0001)). No improvements in quality of life or lung function were reported in the ΔF508 participants.Combined data from both phase 3 G551D trials demonstrated increased reporting of cough, odds ratio 0.57 (95% CI 0.33 to 1.00) and increased episodes of decreased pulmonary function, odds ratio 0.29 (95% CI 0.10 to 0.82) in the placebo group. The adult phase 3 G551D trial demonstrated increased reporting of dizziness amongst the ivacaftor group, OR 10.55 (95% CI 1.32 to 84.47). No trial showed a difference between treatment arms in the number of participants interrupting or discontinuing the trial drug.In the phase 3 G551D trials, fewer participants assigned to ivacaftor developed serious pulmonary exacerbations. When considering all data for exacerbations, participants taking ivacaftor in the adult phase 3 G551D study developed fewer exacerbations, odds ratio 0.54 (95% CI 0.29 to 1.01). In the other G551D studies and in the ΔF508 study, there was no difference between groups in the number of participants who developed pulmonary exacerbations.Combined data from both phase 3 G551D trials demonstrated significant improvements in absolute change from baseline in forced expiratory volume at one second (% predicted) at 24 weeks, mean difference 10.80% (95% CI 8.91 to 12.69) and 48 weeks, mean difference 10.44% (95% CI 8.56 to 12.32); also in weight at 24 weeks, mean difference 2.37 kg (95% CI 1.68 to 3.06) and 48 weeks, mean difference 2.75 kg (95% CI 1.74 to 3.75). No improvements in these outcomes were reported in the ΔF508 participants.Significant reductions in sweat chloride concentration were reported in both G551D and ΔF508 participants: in combined data from both phase 3 G551D trials at 24 weeks, mean difference -48.98 mmol/L (95% CI -52.07 to -45.89) and 48 weeks, mean difference -49.03 mmol/L (95% CI -52.11 to -45.94); and from the ΔF508 trial at 16 weeks, mean difference -2.90 mmol/L (95% CI -5.60 to -0.20). AUTHORS' CONCLUSIONS: Both G551D phase 3 trials (n = 219) demonstrated a clinically relevant impact of the potentiator ivacaftor on outcomes at 24 and 48 weeks, providing evidence for the use of this treatment in adults and children (over six years of age) with cystic fibrosis and the G551D mutation (class III). There is no evidence to support the use of ivacaftor in people with the ΔF508 mutation (class II) (n = 140). Trials on ivacaftor in people with different mutations are ongoing.


Assuntos
Aminofenóis/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Mutação , Quinolonas/uso terapêutico , Adulto , Fatores Etários , Criança , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Volume Expiratório Forçado/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular/métodos , Depuração Mucociliar , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Arch Dis Child Educ Pract Ed ; 99(3): 117-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24306392

RESUMO

Pulse oximetry is routinely used in hospitals in high-income settings, but its theoretical basis is often poorly understood. This paper summarises the physiological background, technological basis and limitations of pulse oximetry.


Assuntos
Oximetria , Criança , Humanos
16.
Pulm Ther ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758409

RESUMO

Worldwide, over 2 billion children under the age of 5 experience stunting, wasting, or are underweight. Malnutrition contributes to 45% of all deaths in this age group (approximately 3.1 million deaths) [1]. Poverty, food insecurity, suboptimal feeding practices, climate change, and conflict are all contributing factors. Malnutrition causes significant respiratory problems, including increased risk of respiratory infections, impaired lung function, and increased risk of subsequent adult respiratory disease, including asthma, COPD, and lung cancer. Childhood malnutrition not only has serious consequences for children's health but it also has numerous consequences on wellbeing and educational attainment. Childhood malnutrition is a complex and multifaceted problem. However, by understanding and addressing the underlying causes, and investing in prevention and treatment programs, it is possible to maximize children's health and wellbeing on a global scale. This narrative review will focus on the impact of childhood malnutrition on lung development, the consequent respiratory disease, and what actions can be taken to reduce the burden of malnutrition on lung health.

17.
Eur Respir Rev ; 33(172)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38599675

RESUMO

Respiratory symptoms are ubiquitous in children and, even though they may be the harbinger of poor long-term outcomes, are often trivialised. Adverse exposures pre-conception, antenatally and in early childhood have lifetime impacts on respiratory health. For the most part, lung function tracks from the pre-school years at least into late middle age, and airflow obstruction is associated not merely with poor respiratory outcomes but also early all-cause morbidity and mortality. Much would be preventable if social determinants of adverse outcomes were to be addressed. This review presents the perspectives of paediatricians from many different contexts, both high and low income, including Europe, the Americas, Australasia, India, Africa and China. It should be noted that there are islands of poverty within even the highest income settings and, conversely, opulent areas in even the most deprived countries. The heaviest burden of any adverse effects falls on those of the lowest socioeconomic status. Themes include passive exposure to tobacco smoke and indoor and outdoor pollution, across the entire developmental course, and lack of access even to simple affordable medications, let alone the new biologicals. Commonly, disease outcomes are worse in resource-poor areas. Both within and between countries there are avoidable gross disparities in outcomes. Climate change is also bearing down hardest on the poorest children. This review highlights the need for vigorous advocacy for children to improve lifelong health. It also highlights that there are ongoing culturally sensitive interventions to address social determinants of disease which are already benefiting children.


Assuntos
Transtornos Respiratórios , Determinantes Sociais da Saúde , Criança , Pré-Escolar , Humanos , China , Europa (Continente) , Morbidade , Pobreza , Feminino , Gravidez , Recém-Nascido , Lactente , Efeitos Tardios da Exposição Pré-Natal
18.
Breathe (Sheff) ; 19(2): 230058, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37645022

RESUMO

It is becoming increasingly apparent that poor housing quality affects indoor air quality, significantly impacting on respiratory health in children and young people. Exposure to damp and/or mould in the home, cold homes and the presence of pests and pollutants all have a significant detrimental impact on child respiratory health. There is a complex relationship between features of poor-quality housing, such as being in a state of disrepair, poor ventilation, overcrowding and being cold, that favour an environment resulting in poor indoor air quality. Children living in rented (private or public) housing are more likely to come from lower-income backgrounds and are most at risk of living in substandard housing posing a serious threat to respiratory health. Children have the right to safe and adequate housing, and research has shown that either rehousing or making modifications to poor-quality housing to improve indoor air quality results in improved respiratory health. Urgent action is needed to address this threat to health. All stakeholders should understand the relationship between poor-quality housing and respiratory health in children and act, working with families, to redress this modifiable risk factor. Educational aims: The reader should understand how housing quality and indoor air quality affect respiratory health in children.The reader should understand which children are at most risk of living in poor-quality housing.The reader should understand what policy recommendations have been made and what actions need to be undertaken to improve housing quality and respiratory health in children and young people.

19.
Arch Dis Child ; 108(2): 94-101, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35680401

RESUMO

One in three children in the UK lives in relative poverty. There are clear and consistent links between child poverty and paediatric morbidity and mortality. In this review, we discuss drivers for family poverty in the UK, and how this leads to poor child health outcomes. We present a framework for healthcare professionals and institutions to consider interventions and strategies relating to socioeconomic health inequalities. We will focus on approaches to mitigate the effects of child poverty on children using our services at a local level and outline the importance of healthcare workers advocating for structural and high-level policy change to address the deep-rooted societal problems that cause child poverty.


Assuntos
Pobreza Infantil , Pobreza , Criança , Humanos , Fatores Socioeconômicos , Desigualdades de Saúde , Reino Unido/epidemiologia , Saúde da Criança
20.
Expert Rev Respir Med ; 17(12): 1249-1259, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38240133

RESUMO

INTRODUCTION: A child's living environment has a significant impact on their respiratory health, with exposure to poor indoor air quality (IAQ) contributing to potentially lifelong respiratory morbidity. These effects occur throughout childhood, from the antenatal period through to adolescence. Children are particularly susceptible to the effects of environmental insults, and children living in socioeconomic deprivation globally are more likely to breathe air both indoors and outdoors, which poses an acute and long-term risk to their health. Adult respiratory health is, at least in part, determined by exposures and respiratory system development in childhood, starting in utero. AREAS COVERED: This narrative review will discuss, from a global perspective, what contributes to poor IAQ in the child's home and school environment and the impact that indoor air pollution exposure has on respiratory health throughout the different stages of childhood. EXPERT OPINION: All children have the right to a living and educational environment without the threat of pollution affecting their health. Action is needed at multiple levels to address this pressing issue to improve lifelong respiratory health. Such action should incorporate a child's rights-based approach, empowering children, and their families, to have access to clean air to breathe in their living environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Asma , Gravidez , Criança , Adolescente , Humanos , Feminino , Poluição do Ar em Ambientes Fechados/efeitos adversos , Pulmão/química , Progressão da Doença , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA