Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38610516

RESUMO

In recent years, the development of intelligent sensor systems has experienced remarkable growth, particularly in the domain of microwave and millimeter wave sensing, thanks to the increased availability of affordable hardware components. With the development of smart Ground-Based Synthetic Aperture Radar (GBSAR) system called GBSAR-Pi, we previously explored object classification applications based on raw radar data. Building upon this foundation, in this study, we analyze the potential of utilizing polarization information to improve the performance of deep learning models based on raw GBSAR data. The data are obtained with a GBSAR operating at 24 GHz with both vertical (VV) and horizontal (HH) polarization, resulting in two matrices (VV and HH) per observed scene. We present several approaches demonstrating the integration of such data into classification models based on a modified ResNet18 architecture. We also introduce a novel Siamese architecture tailored to accommodate the dual input radar data. The results indicate that a simple concatenation method is the most promising approach and underscore the importance of considering antenna polarization and merging strategies in deep learning applications based on radar data.

2.
Sensors (Basel) ; 23(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687966

RESUMO

The design of wearable antennas presents a challenge from multiple perspectives, as they must meet technical requirements and satisfy safety standards while also being suitable for integration into clothing and aesthetically pleasing. In recent years, the development of conductive fabrics has, in many ways, allowed for significant progress in the manufacturing of wearable antennas, and in previous work, we developed textile slotted waveguide antennas using conductive textiles and traditional sewing processes. However, various aspects of the design and realization of such antennas remain challenging. In particular, this work investigates the issue of using foam-based molds, which enables the realization of thin, flexible, wearable antennas, as well as the issue of antenna feed, specifically the transition from a classic coaxial transmission line to a waveguide. The design of the transition was focused on simplicity and robustness, due to which we limited the number of degrees of freedom in the design process in order to achieve a structure suitable for mounting on textile waveguide antennas. In addition, the antenna design procedure and the body-channel model were considered in order to optimize the performance of the antennas and the wireless body-centric system itself. Several prototypes of different kinds were developed in the 5.8 GHz ISM band, confirming the feasibility of the proposed concepts through experimental results.

3.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161791

RESUMO

One of the major challenges in the development of wearable antennas is to design an antenna that can at the same time satisfy technical requirements, be aesthetically acceptable, and be suitable for wearable applications. In this paper, a novel wearable antenna is proposed-textile realization of a slotted waveguide antenna. The antenna is realized using conductive fabric to manufacture the walls of a rectangular waveguide in which the slots were cut out. All connections and cuts are sewn with conductive thread taking over advantages of the traditional process of manufacturing textile objects. The developed slotted waveguide array prototype, containing three slots and designed for operation in the 5.8-GHz ISM band, is experimentally characterized and compared to an equivalent metallic antenna. The achieved operating bandwidth is larger than 300 MHz in both cases. The measured gain of a textile slotted waveguide array is around 9 dBi with a radiation efficiency larger than 50% in the whole operating bandwidth, i.e., the textile array showed a 2 dB lower gain in comparison to the metallic counterpart. The gain is stable in the whole bandwidth and the radiation patterns do not differ. The results demonstrated that such textile antennas are suitable for body-centric communication and sensor systems and can be integrated into clothing, e.g., into a smart safety vest or into a uniform. Further analysis of various realizations of slotted waveguide antennas is presented showing that different versions of the proposed antenna can be used in all three off-body, on-body, and in-body communication scenarios.


Assuntos
Têxteis , Tecnologia sem Fio , Condutividade Elétrica , Desenho de Equipamento , Software
4.
Sensors (Basel) ; 20(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271813

RESUMO

Recently, there has been an increased interest in exploring periodic structures with higher symmetry due to various possibilities of utilizing them in novel electromagnetic applications. The aim of this paper is to discuss design issues related to the implementation of holey glide-symmetric periodic structures in waveguide-based components. In particular, one can implement periodic structures with glide symmetry in one or two directions, which we differentiate as 1D and 2D glide symmetry, respectively. The key differences in the dispersion and bandgap properties of these two realizations are presented and design guidelines are indicated, with special care devoted to practical issues. Focusing on the design of gap waveguide-based components, we demonstrate using simulated and measured results that in practice it is often sufficient to use 1D glide symmetry, which is also simpler to mechanically realize, and if larger attenuation of lateral waves is needed, a diagonally directed 2D glide symmetric structure should be implemented. Finally, an analysis of realistic holes with conical endings is performed using a developed effective hole depth method, which combined with the presented analysis and results can serve as a valuable tool in the process of designing novel electrically-large waveguide-based components.

5.
Opt Lett ; 42(10): 2026-2029, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504740

RESUMO

This Letter discusses nonresonant modes excited on holey metasurfaces and their influence on the properties of spoof plasmonic states supported by the metasurface when a second surface is placed in its proximity. We consider here a metallic surface with periodic holes drilled in it. The field excited on each hole is projected onto a set of nonresonant modes in order to discuss their relative relevance. While previous simpler models assumed only the presence of the fundamental mode, we show that the simultaneous presence of several modes occurs when the surface is placed next to a metallic plate. Therefore, higher-order modes are responsible for the peculiar physical properties of wave propagation of spoof plasmons between two surfaces, which can lead to new gradient-index flat lenses for transceivers for space communications.

6.
IEEE Trans Biomed Circuits Syst ; 18(1): 27-38, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37527296

RESUMO

One challenge in designing RF wireless bioelectronic devices is the impact of the interaction between electromagnetic waves and host body tissues on far-field wireless performance. In this article, we investigate a peculiar phenomenon of implantable RF wireless devices within a small-scale host body related to the deformation of the directivity pattern. Radiation measurements of subcutaneously implanted antennas within rodent cadavers show that the direction of maximum radiation is not always identical with the direction to the closest body-air interface, as one would expect in larger-scale host bodies. For an implanted antenna in the back of a mouse, we observed the maximum directivity in the ventral direction with 4.6 dB greater gain compared to the nearest body-air interface direction. Analytic analysis within small-scale spherical body phantoms identifies two main factors for these results: the limited absorption losses due to the small body size relative to the operating wavelength and the high permittivity of the biological tissues of the host body. Due to these effects, the entire body acts as a dielectric resonator antenna, leading to deformations of the directivity pattern. These results are confirmed with the practical example of a wirelessly powered 2.4-GHz optogenetic implant, demonstrating the significance of the judicious placement of external antennas to take advantage of the deformation of the implanted antenna pattern. These findings emphasize the importance of carefully designing implantable RF wireless devices based on their placements and relative electrical dimensions in small-scale animal models.


Assuntos
Próteses e Implantes , Tecnologia sem Fio , Animais , Camundongos , Imagens de Fantasmas
7.
Appl Opt ; 52(14): 3234-40, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23669835

RESUMO

Modulation-averaging reflectors have recently been proposed as a means for improving the link margin in self-seeded wavelength-division multiplexing in passive optical networks. In this work, we describe simple methods for determining key parameters of such structures and use them to predict their averaging efficiency. We characterize several reflectors built by arraying fiber-Bragg gratings along a segment of an optical fiber and show very good agreement between experiments and theoretical models.

8.
Opt Express ; 20(16): 17386-92, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23038291

RESUMO

We demonstrate an extended-cavity (1-km round trip) transmitter employing a reflective-semiconductor optical amplifier (RSOA) self-seeded by spectrally-sliced passive modulation-averaging reflector. We show that using modulation averaging reflectors in self-seeded transmitters improves link margin, allows a wider range of bias conditions for the RSOA by removing the modulation in the seeding light and consequently allows operation with higher extinction ratios. We furthermore demonstrate 47 km transmission at 1.25 Gbps with a 16-channel fully passive remote node. This type of transmitter is suitable for application in colorless WDM-PON systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA