Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chromosoma ; 132(4): 305-315, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615728

RESUMO

Nucleolin is a multifunctional RNA-binding protein that resides predominantly not only in the nucleolus, but also in multiple other subcellular pools in the cytoplasm in mammalian cells, and is best known for its roles in ribosome biogenesis, RNA stability, and translation. During early mitosis, nucleolin is required for equatorial mitotic chromosome alignment prior to metaphase. Using high resolution fluorescence imaging, we reveal that nucleolin is required for multiple centrosome-associated functions at the G2-prophase boundary. Nucleolin depletion led to dissociation of the centrosomes from the G2 nuclear envelope, a delay in the onset of nuclear envelope breakdown, reduced inter-centrosome separation, and longer metaphase spindles. Our results reveal novel roles for nucleolin in early mammalian mitosis, establishing multiple important functions for nucleolin during mammalian cell division.


Assuntos
Nucleolina , Fuso Acromático , Animais , Fuso Acromático/metabolismo , Centrossomo/metabolismo , Mitose , Vertebrados , Mamíferos
2.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34338279

RESUMO

The conserved exocyst complex regulates plasma membrane-directed vesicle fusion in eukaryotes. However, its role in stem cell proliferation has not been reported. Germline stem cell (GSC) proliferation in the nematode Caenorhabditis elegans is regulated by conserved Notch signaling. Here, we reveal that the exocyst complex regulates C. elegans GSC proliferation by modulating Notch signaling cell autonomously. Notch membrane density is asymmetrically maintained on GSCs. Knockdown of exocyst complex subunits or of the exocyst-interacting GTPases Rab5 and Rab11 leads to Notch redistribution from the GSC-niche interface to the cytoplasm, suggesting defects in plasma membrane Notch deposition. The anterior polarity (aPar) protein Par6 is required for GSC proliferation, and for maintaining niche-facing membrane levels of Notch and the exocyst complex. The exocyst complex biochemically interacts with the aPar regulator Par5 (14-3-3ζ) and Notch in C. elegans and human cells. Exocyst components are required for Notch plasma membrane localization and signaling in mammalian cells. Our study uncovers a possibly conserved requirement of the exocyst complex in regulating GSC proliferation and in maintaining optimal membrane Notch levels.


Assuntos
Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Nicho de Células-Tronco/fisiologia , Proteínas 14-3-3/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Comunicação Celular/fisiologia , Membrana Celular/fisiologia , Citoplasma/metabolismo , Citoplasma/fisiologia , Eucariotos/metabolismo , Eucariotos/fisiologia , Fusão de Membrana/fisiologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia
3.
PLoS Biol ; 19(11): e3001432, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34813590

RESUMO

Homeostatic scaling in neurons has been attributed to the individual contribution of either translation or degradation; however, there remains limited insight toward understanding how the interplay between the two processes effectuates synaptic homeostasis. Here, we report that a codependence between protein synthesis and degradation mechanisms drives synaptic homeostasis, whereas abrogation of either prevents it. Coordination between the two processes is achieved through the formation of a tripartite complex between translation regulators, the 26S proteasome, and the miRNA-induced silencing complex (miRISC) components such as Argonaute, MOV10, and Trim32 on actively translating transcripts or polysomes. The components of this ternary complex directly interact with each other in an RNA-dependent manner. Disruption of polysomes abolishes this ternary interaction, suggesting that translating RNAs facilitate the combinatorial action of the proteasome and the translational apparatus. We identify that synaptic downscaling involves miRISC remodeling, which entails the mTORC1-dependent translation of Trim32, an E3 ligase, and the subsequent degradation of its target, MOV10 via the phosphorylation of p70 S6 kinase. We find that the E3 ligase Trim32 specifically polyubiquitinates MOV10 for its degradation during synaptic downscaling. MOV10 degradation alone is sufficient to invoke downscaling by enhancing Arc translation through its 3' UTR and causing the subsequent removal of postsynaptic AMPA receptors. Synaptic scaling was occluded when we depleted Trim32 and overexpressed MOV10 in neurons, suggesting that the Trim32-MOV10 axis is necessary for synaptic downscaling. We propose a mechanism that exploits a translation-driven protein degradation paradigm to invoke miRISC remodeling and induce homeostatic scaling during chronic network activity.


Assuntos
Homeostase/genética , MicroRNAs/metabolismo , Biossíntese de Proteínas/genética , Proteólise , Complexo de Inativação Induzido por RNA/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fosforilação , Polirribossomos/metabolismo , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sinapses/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
J Cell Sci ; 134(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34014309

RESUMO

In animal cells, a single cytoplasmic dynein motor mediates microtubule minus-end-directed transport, counterbalancing dozens of plus-end-directed kinesins. The remarkable ability of dynein to interact with a diverse cargo spectrum stems from its tightly regulated recruitment of cargo-specific adaptor proteins, which engage the dynactin complex to make a tripartite processive motor. Adaptor binding is governed by the homologous dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which exist in mutually exclusive dynein complexes that can perform both unique and overlapping functions. The intrinsically disordered and variable C-terminal domains of the LICs are indispensable for engaging a variety of structurally divergent adaptors. Here, we hypothesize that numerous spatiotemporally regulated permutations of posttranslational modifications of the LICs, as well as of the adaptors and cargoes, exponentially expand the spectrum of dynein-adaptor-cargo complexes. We thematically illustrate the possibilities that could generate a vast set of biochemical variations required to support the wide range of dynein functions.


Assuntos
Dineínas do Citoplasma , Dineínas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Complexo Dinactina/genética , Complexo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo
5.
J Cell Sci ; 133(8)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303556

RESUMO

The Molecular Motors, Transport and Trafficking (M2T2) meeting serves as a platform for both Indian and global scientists working on the cytoskeleton, cytoskeletal motors and membrane trafficking to gather and discuss the latest developments in the field. The 2019 edition of the meeting, held from 18-20 October at the National Brain Research Centre (NBRC), Manesar, India and organised by Mahak Sharma (Indian Institute of Science Education and Research, Mohali) and Anindya Ghosh Roy (NBRC), was witness to stimulating research on a range of topics related to the cytoskeleton, including cytoskeletal organization, motor protein function and regulation, mechanical forces and vesicular transport, and trafficking in health and disease.


Assuntos
Citoesqueleto , Microtúbulos , Transporte Biológico , Citoesqueleto/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Miosinas/metabolismo
6.
J Cell Sci ; 133(12)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32467330

RESUMO

The molecular motor dynein is essential for mitotic spindle orientation, which defines the axis of cell division. The light intermediate chain subunits, LIC1 and LIC2, define biochemically and functionally distinct vertebrate dynein complexes, with LIC2-dynein playing a crucial role in ensuring spindle orientation. We reveal a novel, mitosis-specific interaction of LIC2-dynein with the cortical actin-bundling protein transgelin-2. Transgelin-2 is required for maintaining proper spindle length, equatorial metaphase chromosome alignment, spindle orientation and timely anaphase onset. We show that transgelin-2 stabilizes the cortical recruitment of LGN-NuMA, which together with dynein is required for spindle orientation. The opposing actions of transgelin-2 and LIC2-dynein maintain optimal cortical levels of LGN-NuMA. In addition, we show that the highly conserved serine 194 phosphorylation of LIC2 is required for proper spindle orientation, by maintaining mitotic centrosome integrity to ensure optimal astral microtubule nucleation. The work reveals two specific mechanisms through which LIC2-dynein regulates mitotic spindle orientation; namely, through a new interactor transgelin-2, which is required for engagement of LGN-NuMA with the actin cortex, and through mitotic phosphoregulation of LIC2 to control microtubule nucleation from the poles.This article has an associated First Person interview with the first author of the paper.


Assuntos
Dineínas , Fuso Acromático , Proteínas de Ciclo Celular/metabolismo , Dineínas/genética , Dineínas/metabolismo , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Microtúbulos/metabolismo , Mitose , Proteínas Musculares , Fuso Acromático/metabolismo
7.
FASEB J ; 35(1): e21199, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33222276

RESUMO

Tunneling nanotubes (TNTs) mediate intercellular communication between animal cells in health and disease, but the mechanisms of their biogenesis and function are poorly understood. Here we report that the RNA-binding protein (RBP) nucleolin, which interacts with the known TNT-inducing protein MSec, is essential for TNT formation in mammalian cells. Nucleolin, through its RNA-binding domains (RBDs), binds to and maintains the cytosolic levels of 14-3-3ζ mRNA, and is, therefore, required for TNT formation. A specific region of the 3'-untranslated region (UTR) of the 14-3-3ζ mRNA is likely to be involved in its regulation by nucleolin. Functional complementation experiments suggest that nucleolin and 14-3-3ζ form a linear signaling axis that promotes the phosphorylation and inactivation of the F-actin depolymerization factor cofilin to induce TNT formation. MSec also similarly inactivates cofilin, but potentiates TNT formation independent of the nucleolin-14-3-3ζ axis, despite biochemically interacting with both proteins. We show that 14-3-3ζ and nucleolin are required for the formation of TNTs between primary mouse neurons and astrocytes and in multiple other mammalian cell types. We also report that the Caenorhabditis elegans orthologs of 14-3-3ζ and MSec regulate the size and architecture of the TNT-like cellular protrusions of the distal tip cell (DTC), the germline stem cell niche in the gonad. Our study demonstrates a novel and potentially conserved mRNA-guided mechanism of TNT formation through the maintenance of cellular 14-3-3ζ mRNA levels by the RBP nucleolin.


Assuntos
Proteínas 14-3-3/metabolismo , Regiões 3' não Traduzidas , Fatores de Despolimerização de Actina/metabolismo , Comunicação Celular , Nanotubos , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas 14-3-3/genética , Fatores de Despolimerização de Actina/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Humanos , Fosfoproteínas/genética , Fosforilação , Proteínas de Ligação a RNA/genética , Nucleolina
8.
Biochem J ; 478(22): 3977-3998, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34813650

RESUMO

Tunneling nanotubes (TNTs) are F-actin-based, membrane-enclosed tubular connections between animal cells that transport a variety of cellular cargo. Over the last 15 years since their discovery, TNTs have come to be recognized as key players in normal cell communication and organism development, and are also exploited for the spread of various microbial pathogens and major diseases like cancer and neurodegenerative disorders. TNTs have also been proposed as modalities for disseminating therapeutic drugs between cells. Despite the rapidly expanding and wide-ranging relevance of these structures in both health and disease, there is a glaring dearth of molecular mechanistic knowledge regarding the formation and function of these important but enigmatic structures. A series of fundamental steps are essential for the formation of functional nanotubes. The spatiotemporally controlled and directed modulation of cortical actin dynamics would be required to ensure outward F-actin polymerization. Local plasma membrane deformation to impart negative curvature and membrane addition at a rate commensurate with F-actin polymerization would enable outward TNT elongation. Extrinsic tactic cues, along with cognate intrinsic signaling, would be required to guide and stabilize the elongating TNT towards its intended target, followed by membrane fusion to create a functional TNT. Selected cargoes must be transported between connected cells through the action of molecular motors, before the TNT is retracted or destroyed. This review summarizes the current understanding of the molecular mechanisms regulating these steps, also highlighting areas that deserve future attention.


Assuntos
Comunicação Celular , Animais , Transporte Biológico , Linhagem Celular , Membrana Celular , Estruturas da Membrana Celular/imunologia , Estruturas da Membrana Celular/metabolismo , Estruturas da Membrana Celular/ultraestrutura , Humanos , Fusão de Membrana , Nanotubos/ultraestrutura
9.
J Cell Sci ; 132(14)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31221728

RESUMO

Cytokinesis is the final step of cell division following chromosome segregation that generates two daughter cells. The conserved exocyst complex is required for scission of the intercellular cytokinetic bridge, although the molecular mechanisms it employs in this process are unclear. We identify and validate the early endocytic GTPase Rab5 as interacting with the exocyst complex in mammalian cells. Rab5 localizes in the cytokinetic bridge and on the midbody ring in a manner similar to the exocyst complex. Depletion of Rab5 led to delayed abscission. Caenorhabditis elegans orthologs of both exocyst complex subunits and Rab5 localize along the cleavage furrow and are required for cytokinesis in early embryos. Cytokinetic cells depleted of either Rab5 or the exocyst subunits Exoc3 and Exoc4 showed impaired deposition of the endosomal sorting complexes required for transport (ESCRT) III subunits CHMP2B and/or CHMP4B near the midbody ring. The study reveals an evolutionarily conserved role for the early endocytic marker Rab5 in cytokinetic abscission. In addition, it uncovers a key requirement of the exocyst and Rab5 for the delivery of components of the membrane-severing ESCRT III machinery to complete cytokinesis.


Assuntos
Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Subunidades Proteicas/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Endocitose , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Corpos Polares/citologia , Ligação Proteica , Proteínas de Transporte Vesicular/metabolismo
10.
J Biol Chem ; 294(18): 7177-7193, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30877198

RESUMO

Tunneling nanotubes (TNTs) are membrane conduits that mediate long-distance intercellular cross-talk in several organisms and play vital roles during development, pathogenic transmission, and cancer metastasis. However, the molecular mechanisms of TNT formation and function remain poorly understood. The protein MSec (also known as TNFα-induced protein 2 (TNFAIP2) and B94) is essential for TNT formation in multiple cell types. Here, using affinity protein purification, mass spectrometric identification, and confocal immunofluorescence microscopy assays, we found that MSec interacts with the endoplasmic reticulum (ER) chaperone ERp29. siRNA-mediated ERp29 depletion in mammalian cells significantly reduces TNT formation, whereas its overexpression induces TNT formation, but in a strictly MSec-dependent manner. ERp29 stabilized MSec protein levels, but not its mRNA levels, and the chaperone activity of ERp29 was required for maintaining MSec protein stability. Subcellular ER fractionation and subsequent limited proteolytic treatment suggested that MSec is associated with the outer surface of the ER. The ERp29-MSec interaction appeared to require the presence of other bridging protein(s), perhaps triggered by post-translational modification of ERp29. Our study implicates MSec as a target of ERp29 and reveals an indispensable role for the ER in TNT formation, suggesting new modalities for regulating TNT numbers in cells and tissues.


Assuntos
Citocinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Nanotubos , Animais , Linhagem Celular Tumoral , Proteínas de Choque Térmico/genética , Humanos , Camundongos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
11.
IUBMB Life ; 67(7): 575-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26173082

RESUMO

The unicellular metazoan zygote undergoes a series of cell divisions that are central to its development into an embryo. Differentiation of embryonic cells leads eventually to the development of a functional adult. Fate specification of pluripotent embryonic cells occurs during the early embryonic cleavage divisions in several animals. Early development is characterized by well-known stages of embryogenesis documented across animals--morulation, blastulation, and morphogenetic processes such as gastrulation, all of which contribute to differentiation and tissue specification. Despite this broad conservation, there exist clearly discernible morphological and functional differences across early embryonic stages in metazoans. Variations in the mitotic mechanisms of early embryonic cell divisions play key roles in governing these gross differences that eventually encode developmental patterns. In this review, we discuss molecular mechanisms of both karyokinesis (nuclear division) and cytokinesis (cytoplasmic separation) during early embryonic divisions. We outline the broadly conserved molecular pathways that operate in these two stages in early embryonic mitoses. In addition, we highlight mechanistic variations in these two stages across different organisms. We finally discuss outstanding questions of interest, answers to which would illuminate the role of divergent mitotic mechanisms in shaping early animal embryogenesis.


Assuntos
Segregação de Cromossomos , Embrião de Mamíferos/citologia , Embrião não Mamífero/citologia , Fuso Acromático , Animais , Diferenciação Celular , Citocinese , Drosophila/embriologia , Mitose , Ouriços-do-Mar/embriologia , Fuso Acromático/fisiologia
12.
Cell Death Dis ; 13(6): 563, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732625

RESUMO

Nutrient surplus and consequent free fatty acid accumulation in the liver cause hepatosteatosis. The exposure of free fatty acids to cultured hepatocyte and hepatocellular carcinoma cell lines induces cellular stress, organelle adaptation, and subsequent cell death. Despite many studies, the mechanism associated with lipotoxicity and subsequent cell death still remains poorly understood. Here, we have used the proteomics approach to circumvent the mechanism for lipotoxicity using hepatocellular carcinoma cells as a model. Our quantitative proteomics data revealed that ectopic lipids accumulation in cells severely affects the ubiquitin-proteasomal system. The palmitic acid (PA) partially lowered the expression of deubiquitinating enzyme USP7 which subsequently destabilizes p53 and promotes mitotic entry of cells. Our global phosphoproteomics analysis also provides strong evidence of an altered cell cycle checkpoint proteins' expression that abrogates early G2/M checkpoints recovery with damaged DNA and induced mitotic catastrophe leading to hepatocyte death. We observe that palmitic acid prefers apoptosis-inducing factor (AIF) mediated cell death by depolarizing mitochondria and translocating AIF to the nucleus. In summary, the present study provides evidence of PA-induced hepatocellular death mediated by deubiquitinase USP7 downregulation and subsequent mitotic catastrophe.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Peptidase 7 Específica de Ubiquitina , Apoptose , Carcinoma Hepatocelular/genética , Morte Celular , Linhagem Celular , Humanos , Neoplasias Hepáticas/genética , Ácido Palmítico/farmacologia , Proteômica , Peptidase 7 Específica de Ubiquitina/genética
13.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34709360

RESUMO

The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein's cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome-nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.


Assuntos
Dineínas do Citoplasma/metabolismo , Mitose , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Subunidades Proteicas/metabolismo , Animais , Linhagem Celular Tumoral , Centrossomo/metabolismo , Complexo Dinactina/metabolismo , Evolução Molecular , Complexo de Golgi/metabolismo , Humanos , Interfase , Cinetocoros/metabolismo , Metáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mutantes/metabolismo , Membrana Nuclear/metabolismo , Fosforilação , Ligação Proteica , Ratos , Peixe-Zebra
14.
J Cell Biol ; 218(3): 871-894, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30674580

RESUMO

Hook proteins are evolutionarily conserved dynein adaptors that promote assembly of highly processive dynein-dynactin motor complexes. Mammals express three Hook paralogs, namely Hook1, Hook2, and Hook3, that have distinct subcellular localizations and expectedly, distinct cellular functions. Here we demonstrate that Hook2 binds to and promotes dynein-dynactin assembly specifically during mitosis. During the late G2 phase, Hook2 mediates dynein-dynactin localization at the nuclear envelope (NE), which is required for centrosome anchoring to the NE. Independent of its binding to dynein, Hook2 regulates microtubule nucleation at the centrosome; accordingly, Hook2-depleted cells have reduced astral microtubules and spindle positioning defects. Besides the centrosome, Hook2 localizes to and recruits dynactin and dynein to the central spindle. Dynactin-dependent targeting of centralspindlin complex to the midzone is abrogated upon Hook2 depletion; accordingly, Hook2 depletion results in cytokinesis failure. We find that the zebrafish Hook2 homologue promotes dynein-dynactin association and was essential for zebrafish early development. Together, these results suggest that Hook2 mediates assembly of the dynein-dynactin complex and regulates mitotic progression and cytokinesis.


Assuntos
Citocinese/fisiologia , Fase G2/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Centrômero/genética , Centrômero/metabolismo , Dineínas/genética , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Membrana Nuclear/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
Front Oncol ; 9: 54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828563

RESUMO

Colorectal cancer is the third major cause of cancer-related mortality worldwide. The upward trend in incidence and mortality rates, poor sensitivity to conventional therapies and a dearth of early diagnostic parameters pose a huge challenge in the management of colorectal cancer in India. Due to the high level of genetic diversity present in the Indian population, unraveling the genetic contributions toward pathogenesis is key for understanding the etiology of colorectal cancer and in reversing this trend. We have established a novel cell line, MBC02, from an Indian colorectal cancer patient and have carried out extensive molecular characterization to unravel the pathological alterations in this cell line. In-depth molecular analysis of MBC02 revealed suppression of E-cadherin expression, concomitant with overexpression of EMT related molecules, which manifested in the form of highly migratory and invasive cells. Loss of membrane-tethered E-cadherin released ß-catenin from the adherens junction resulting in its cytoplasmic and nuclear accumulation and consequently, upregulation of c-Myc. MBC02 also showed dramatic transcriptional upregulation of ß-catenin. Remarkably, we observed significantly elevated proteasome activity that perhaps co-evolved to compensate for the unnaturally high mRNA level of ß-catenin to regulate the increased protein load. In addition, there was substantial misregulation of other clinically relevant signaling pathways that have clinical relevance in the pathogenesis of colorectal cancer. Our findings pave the way toward understanding the molecular differences that could define pathogenesis in cancers originating in the Indian population.

16.
PLoS One ; 11(7): e0159646, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27441562

RESUMO

The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC). However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division.


Assuntos
Anáfase , Dineínas do Citoplasma/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Metáfase , Animais , Células HeLa , Humanos , Cinetocoros/metabolismo , Modelos Biológicos , Ratos
17.
Sci Rep ; 6(1): 22, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28003657

RESUMO

Cytoplasmic dynein 1 is a multi-protein intracellular motor essential for mediating several mitotic functions, including the establishment of proper spindle orientation. The functional relevance and mechanistic distinctions between two discrete dynein subpopulations distinguished only by Light Intermediate Chain (LIC) homologues, LIC1 and LIC2 is unknown during mitosis. Here, we identify LIC2-dynein as the major mediator of proper spindle orientation and uncover its underlying molecular mechanism. Cortically localized dynein, essential for maintaining correct spindle orientation, consists majorly of LIC2-dynein, which interacts with cortical 14-3-3 ε- ζ and Par3, conserved proteins required for orienting the spindle. LIC2-dynein is also responsible for the majority of dynein-mediated asymmetric poleward transport of NuMA, helping focus microtubule minus ends. In addition, LIC2-dynein dominates in equatorially aligning chromosomes at metaphase and in regulating mitotic spindle length. Key mitotic functions of LIC2 were remarkably conserved in and essential for early embryonic divisions and development in zebrafish. Thus LIC2-dynein exclusively engages with two major cortical pathways to govern spindle orientation. Overall, we identify a novel selectivity of molecular interactions between the two LICs in mitosis as the underlying basis for their uneven distribution of labour in ensuring proper spindle orientation.


Assuntos
Dineínas do Citoplasma/metabolismo , Fuso Acromático , Animais , Células HeLa , Humanos , Análise de Sequência de DNA , Peixe-Zebra
18.
Indian J Exp Biol ; 41(7): 710-23, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15255374

RESUMO

Wild animals are an integral component of the ecosystem. Their decimation due to abrupt natural calamities or due to gradual human intervention would be disastrous to the ecosystem and would alter the balance in nature between various biotic components. Such an imbalance could have an adverse effect on the ecosystem. Therefore, there is an urgent need to put an end to the ever increasing list of endangered species by undertaking both in situ and ex situ conservation using tools of modern biology, to ascertain the degree of genetic variation and reproductive competence in these animals. This review highlights the development and use of molecular markers such as microsatellites, minisatellites, mitochondrial control region, cytochrome b and MHC loci to assess the genetic variation in various Indian wild animals such as the lion, tiger, leopard and deer. The review also presents data on the semen profile of the big cats of India. Reproductive technologies such as cryopreservation of semen and artificial insemination in big cats are also highlighted.


Assuntos
Animais Selvagens , Inseminação Artificial/veterinária , Técnicas Reprodutivas/veterinária , Animais , Biotecnologia , Transferência Embrionária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA