Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(52): 26909-26917, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31811021

RESUMO

Medicinal plants are a prolific source of natural products with remarkable chemical and biological properties, many of which have considerable remedial benefits. Numerous medicinal plants are suffering from wildcrafting, and thus biotechnological production processes of their natural products are urgently needed. The plant Aster tataricus is widely used in traditional Chinese medicine and contains unique active ingredients named astins. These are macrocyclic peptides showing promising antitumor activities and usually containing the highly unusual moiety 3,4-dichloroproline. The biosynthetic origins of astins are unknown despite being studied for decades. Here we show that astins are produced by the recently discovered fungal endophyte Cyanodermella asteris. We were able to produce astins in reasonable and reproducible amounts using axenic cultures of the endophyte. We identified the biosynthetic gene cluster responsible for astin biosynthesis in the genome of C. asteris and propose a production pathway that is based on a nonribosomal peptide synthetase. Striking differences in the production profiles of endophyte and host plant imply a symbiotic cross-species biosynthesis pathway for astin C derivatives, in which plant enzymes or plant signals are required to trigger the synthesis of plant-exclusive variants such as astin A. Our findings lay the foundation for the sustainable biotechnological production of astins independent from aster plants.

2.
Physiol Plant ; 173(2): 639-650, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34145585

RESUMO

Cyanobacteria produce a variety of chemically diverse cyclic lipopeptides with potent antifungal activities. These cyclic lipopeptides have an amphipathic structure comprised of a polar peptide cycle and hydrophobic fatty acid side chain. Many have antibiotic activity against a range of human and plant fungal pathogens. This review article aims to summarize the present knowledge on the chemical diversity and cellular effects of cyanobacterial cyclic lipopeptides that display antifungal activity. Cyclic antifungal lipopeptides from cyanobacteria commonly fall into four structural classes; hassallidins, puwainaphycins, laxaphycins, and anabaenolysins. Many of these antifungal cyclic lipopeptides act through cholesterol and ergosterol-dependent disruption of membranes. In many cases, the cyclic lipopeptides also exert cytotoxicity in human cells, and a more extensive examination of their biological activity and structure-activity relationship is warranted. The hassallidin, puwainaphycin, laxaphycin, and anabaenolysin structural classes are unified through shared complex biosynthetic pathways that encode a variety of unusual lipoinitiation mechanisms and branched biosynthesis that promote their chemical diversity. However, the biosynthetic origins of some cyanobacterial cyclic lipopeptides and the mechanisms, which drive their structural diversification in general, remain poorly understood. The strong functional convergence of differently organized chemical structures suggests that the production of lipopeptide confers benefits for their producer. Whether these benefits originate from their antifungal activity or some other physiological function remains to be answered in the future. However, it is clear that cyanobacteria encode a wealth of new cyclic lipopeptides with novel biotechnological and therapeutic applications.


Assuntos
Antifúngicos , Cianobactérias , Antibacterianos , Antifúngicos/farmacologia , Lipopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia
3.
Physiol Plant ; 173(2): 507-513, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33709388

RESUMO

NordAqua is a multidisciplinary Nordic Center of Excellence funded by NordForsk Bioeconomy program (2017-2022). The research center promotes Blue Bioeconomy and endeavours to reform the use of natural resources in a environmentally sustainable way. In this short communication, we summarize particular outcomes of the consortium. The key research progress of NordAqua includes (1) improving of photosynthetisis, (2) developing novel photosynthetic cell factories that function in a "solar-driven direct CO2 capture to target bioproducts" mode, (3) promoting the diversity of Nordic cyanobacteria and algae as an abundant and resilient alternative for less sustainable forest biomass and for innovative production of biochemicals, and (4) improving the bio-based wastewater purification and nutrient recycling technologies to provide new tools for integrative circular economy platforms.


Assuntos
Fotossíntese , Biomassa
4.
Org Biomol Chem ; 19(25): 5577-5588, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34085692

RESUMO

Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl ß-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.


Assuntos
Lipopeptídeos
5.
Mar Drugs ; 19(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073758

RESUMO

Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Genoma Bacteriano , Poríferos/microbiologia , Animais , Produtos Biológicos/metabolismo , Filogenia , Metabolismo Secundário , Simbiose
6.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30504214

RESUMO

Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high structural variability, particularly in the fatty acid (FA) moiety. Although a biosynthetic gene cluster responsible for synthesis of several PUW variants has been proposed in a cyanobacterial strain, the genetic background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide synthetase and polyketide synthase. Surprisingly, the biosynthetic gene clusters encode two alternative biosynthetic starter modules, and analysis of structural variants suggests that initiation by each of the starter modules results in lipopeptides of differing lengths and FA substitutions. Among additional modifications of the FA chain, chlorination of minutissamide D was explained by the presence of a putative halogenase gene in the PUW/MIN gene cluster of Anabaena minutissima strain UTEX B 1613. We detected PUW variants bearing an acetyl substitution in Symplocastrum muelleri strain NIVA-CYA 644, consistent with an O-acetyltransferase gene in its biosynthetic gene cluster. The major lipopeptide variants did not exhibit any significant antibacterial activity, and only the PUW F variant was moderately active against yeast, consistent with previously published data suggesting that PUWs/MINs interact preferentially with eukaryotic plasma membranes.IMPORTANCE Herein, we deciphered the most important biosynthetic traits of a prominent group of bioactive lipopeptides. We reveal evidence for initiation of biosynthesis by two alternative starter units hardwired directly in the same gene cluster, eventually resulting in the production of a remarkable range of lipopeptide variants. We identified several unusual tailoring genes potentially involved in modifying the fatty acid chain. Careful characterization of these biosynthetic gene clusters and their diverse products could provide important insight into lipopeptide biosynthesis in prokaryotes. Some of the variants identified exhibit cytotoxic and antifungal properties, and some are associated with a toxigenic biofilm-forming strain. The findings may prove valuable to researchers in the fields of natural product discovery and toxicology.


Assuntos
Anabaena/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Lipopeptídeos/biossíntese , Lipopeptídeos/genética , Anti-Infecciosos , Antifúngicos , Proteínas de Bactérias/genética , Genes Bacterianos/genética , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Família Multigênica , Peptídeo Sintases/genética , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Policetídeo Sintases/genética
7.
Ecology ; 100(1): e02554, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30411791

RESUMO

Parasites, such as bacterial viruses (phages), can have large effects on host populations both at the ecological and evolutionary levels. In the case of cyanobacteria, phages can reduce primary production and infected hosts release intracellular nutrients influencing planktonic food web structure, community dynamics, and biogeochemical cycles. Cyanophages may be of great importance in aquatic food webs during large cyanobacterial blooms unless the host population becomes resistant to phage infection. The consequences on plankton community dynamics of the evolution of phage resistance in bloom forming cyanobacterial populations are still poorly studied. Here, we examined the effect of different frequencies of a phage-resistant genotype within a filamentous nitrogen-fixing Nodularia spumigena population on an experimental plankton community. Three Nodularia populations with different initial frequencies (0%, 5%, and 50%) of phage-resistant genotypes were inoculated in separate treatments with the phage 2AV2, the green alga Chlorella vulgaris, and the rotifer Brachionus plicatilis, which formed the experimental plankton community subjected to either nitrogen-limited or nitrogen-rich conditions. We found that the frequency of the phage-resistant Nodularia genotype determined experimental community dynamics. Cyanobacterial populations with a high frequency (50%) of the phage-resistant genotype dominated the cultures despite the presence of phages, retaining most of the intracellular nitrogen in the plankton community. In contrast, populations with low frequencies (0% and 5%) of the phage-resistant genotype were lysed and reduced to extinction by the phage, transferring the intracellular nitrogen held by Nodularia to Chlorella and rotifers, and allowing Chlorella to dominate the communities and rotifers to survive. This study shows that even though phages represent minuscule biomass, they can have key effects on community composition and eco-evolutionary feedbacks in plankton communities.


Assuntos
Bacteriófagos , Chlorella vulgaris , Cianobactérias , Rotíferos , Animais , Cadeia Alimentar
8.
Mar Drugs ; 17(5)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067786

RESUMO

Microcystins are a family of chemically diverse hepatotoxins produced by distantly related cyanobacteria and are potent inhibitors of eukaryotic protein phosphatases 1 and 2A. Here we provide evidence for the biosynthesis of rare variants of microcystin that contain a selection of homo-amino acids by the benthic strain Phormidium sp. LP904c. This strain produces at least 16 microcystin chemical variants many of which contain homophenylalanine or homotyrosine. We retrieved the complete 54.2 kb microcystin (mcy) gene cluster from a draft genome assembly. Analysis of the substrate specificity of McyB1 and McyC adenylation domain binding pockets revealed divergent substrate specificity sequences, which could explain the activation of homo-amino acids which were present in 31% of the microcystins detected and included variants such as MC-LHty, MC-HphHty, MC-LHph and MC-HphHph. The mcy gene cluster did not encode enzymes for the synthesis of homo-amino acids but may instead activate homo-amino acids produced during the synthesis of anabaenopeptins. We observed the loss of microcystin during cultivation of a closely related strain, Phormidium sp. DVL1003c. This study increases the knowledge of benthic cyanobacterial strains that produce microcystin variants and broadens the structural diversity of known microcystins.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Microcistinas/biossíntese , Microcistinas/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genes Bacterianos , Microcistinas/química , Família Multigênica , Filogenia , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de DNA
9.
Biochemistry ; 57(50): 6860-6867, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452235

RESUMO

Aromatic prenylation is an important step in the biosynthesis of many natural products and leads to an astonishing diversity of chemical structures. Cyanobactin pathways frequently encode aromatic prenyltransferases that catalyze the prenylation of these macrocyclic and linear peptides. Here we characterized the anacyclamide ( acy) biosynthetic gene cluster from Anabaena sp. UHCC-0232. Partial reconstitution of the anacyclamide pathway, heterologous expression, and in vitro biochemical characterization demonstrate that the AcyF enzyme, encoded in the acy biosynthetic gene cluster, is a Trp N-prenyltransferase. Bioinformatic analysis suggests the monophyletic origin and rapid diversification of cyanobactin prenyltransferase enzymes and the multiple origins of N-1 Trp prenylation in prenylated natural products. The AcyF enzyme displayed high flexibility toward a range of Trp-containing substrates and represents an interesting new tool for biocatalytic applications.


Assuntos
Dimetilaliltranstransferase/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Anabaena/enzimologia , Anabaena/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Vias Biossintéticas , Dimetilaliltranstransferase/genética , Genes Bacterianos , Família Multigênica , Filogenia , Prenilação , Especificidade por Substrato , Triptofano/química
10.
J Am Chem Soc ; 140(19): 6044-6048, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29701961

RESUMO

Prenylation is a widespread modification that improves the biological activities of secondary metabolites. This reaction also represents a key modification step in biosyntheses of cyanobactins, a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) produced by cyanobacteria. In cyanobactins, amino acids are commonly isoprenylated by ABBA prenyltransferases that use C5 donors. Notably, mass spectral analysis of piricyclamides from a fresh-water cyanobacterium suggested that they may instead have a C10 geranyl group. Here we characterize a novel geranyltransferase involved in piricyclamide biosynthesis. Using the purified enzyme, we show that the enzyme PirF catalyzes Tyr O-geranylation, which is an unprecedented post-translational modification. In addition, the combination of enzymology and analytical chemistry revealed the structure of the final natural product, piricyclamide 7005E1, and the regioselectivity of PirF, which has potential as a synthetic biological tool providing drug-like properties to diverse small molecules.


Assuntos
Geraniltranstransferase/metabolismo , Peptídeos Cíclicos/biossíntese , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo , Cianobactérias/química , Cianobactérias/metabolismo , Geraniltranstransferase/isolamento & purificação , Peptídeos Cíclicos/química
11.
Environ Microbiol ; 20(8): 3083-3099, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30084235

RESUMO

Bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes in marine environments, yet how bacterial communities respond to environmental change is not well known. Metagenomes allow examination of genetic responses of the entire microbial community to environmental change. However, it is challenging to link metagenomes directly to biogeochemical process rates. Here, we investigate metagenomic responses in natural bacterioplankton communities to simulated environmental stressors in the Baltic Sea, including increased river water input, increased nutrient concentration, and reduced oxygen level. This allowed us to identify informative prokaryotic gene markers, responding to environmental perturbation. Our results demonstrate that metagenomic and metabolic changes in bacterial communities in response to environmental stressors are influenced both by the initial community composition and by the biogeochemical factors shaping the functional response. Furthermore, the different sources of dissolved organic matter (DOM) had the largest impact on metagenomic blueprint. Most prominently, changes in DOM loads influenced specific transporter types reflecting the substrate availability and DOC assimilation and consumption pathways. The results provide new knowledge for developing models of ecosystem structure and biogeochemical cycling in future climate change scenarios and advance our exploration of the potential use of marine microorganisms as markers for environmental conditions.


Assuntos
Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Mudança Climática , Ecossistema , Água Doce/análise , Água Doce/microbiologia , Metagenoma , Metagenômica , Microbiota , Compostos Orgânicos/análise , Compostos Orgânicos/metabolismo , Oxigênio/análise , Oxigênio/metabolismo , Água do Mar/análise , Água do Mar/microbiologia
12.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150506

RESUMO

Swinholides are 42-carbon ring polyketides with a 2-fold axis of symmetry. They are potent cytotoxins that disrupt the actin cytoskeleton. Swinholides were discovered from the marine sponge Theonella sp. and were long suspected to be produced by symbiotic bacteria. Misakinolide, a structural variant of swinholide, was recently demonstrated to be the product of a symbiotic heterotrophic proteobacterium. Here, we report the production of swinholide A by an axenic strain of the terrestrial cyanobacterium Nostoc sp. strain UHCC 0450. We located the 85-kb trans-AT polyketide synthase (PKS) swinholide biosynthesis gene cluster from a draft genome of Nostoc sp. UHCC 0450. The swinholide and misakinolide biosynthesis gene clusters share an almost identical order of catalytic domains, with 85% nucleotide sequence identity, and they group together in phylogenetic analysis. Our results resolve speculation around the true producer of swinholides and demonstrate that bacteria belonging to two distantly related phyla both produce structural variants of the same natural product. In addition, we described a biosynthesis cluster from Anabaena sp. strain UHCC 0451 for the synthesis of the cytotoxic and antifungal scytophycin. All of these biosynthesis gene clusters were closely related to each other and created a group of cytotoxic macrolide compounds produced by trans-AT PKSs of cyanobacteria and proteobacteria.IMPORTANCE Many of the drugs in use today originate from natural products. New candidate compounds for drug development are needed due to increased drug resistance. An increased knowledge of the biosynthesis of bioactive compounds can be used to aid chemical synthesis to produce novel drugs. Here, we show that a terrestrial axenic culture of Nostoc cyanobacterium produces swinholides, which have been previously found only from marine sponge or samples related to them. Swinholides are polyketides with a 2-fold axis of symmetry, and they are potent cytotoxins that disrupt the actin cytoskeleton. We describe the biosynthesis gene clusters of swinholide from Nostoc cyanobacteria, as well as the related cytotoxic and antifungal scytophycin from Anabaena cyanobacteria, and we study the evolution of their trans-AT polyketide synthases. Interestingly, swinholide is closely related to misakinolide produced by a symbiotic heterotrophic proteobacterium, demonstrating that bacteria belonging to two distantly related phyla and different habitats can produce similar natural products.


Assuntos
Proteínas de Bactérias/genética , Toxinas Marinhas/biossíntese , Família Multigênica , Nostoc/genética , Policetídeo Sintases/genética , Proteínas de Bactérias/metabolismo , Toxinas Marinhas/genética , Nostoc/metabolismo , Filogenia , Policetídeo Sintases/metabolismo , Análise de Sequência de DNA
13.
Proc Natl Acad Sci U S A ; 112(44): 13669-74, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26474830

RESUMO

Cyclodextrins are cyclic oligosaccharides widely used in the pharmaceutical industry to improve drug delivery and to increase the solubility of hydrophobic compounds. Anabaenolysins are lipopeptides produced by cyanobacteria with potent lytic activity in cholesterol-containing membranes. Here, we identified the 23- to 24-kb gene clusters responsible for the production of the lipopeptide anabaenolysin. The hybrid nonribosomal peptide synthetase and polyketide synthase biosynthetic gene cluster is encoded in the genomes of three anabaenolysin-producing strains of Anabaena. We detected previously unidentified strains producing known anabaenolysins A and B and discovered the production of new variants of anabaenolysins C and D. Bioassays demonstrated that anabaenolysins have weak antifungal activity against Candida albicans. Surprisingly, addition of the hydrophilic fraction of the whole-cell extracts increased the antifungal activity of the hydrophobic anabaenolysins. The fraction contained compounds identified by NMR as α-, ß-, and γ-cyclodextrins, which undergo acetylation. Cyclodextrins have been used for decades to improve the solubility and bioavailability of many drugs including antifungal compounds. This study shows a natural example of cyclodextrins improving the solubility and efficacy of an antifungal compound in an ancient lineage of photosynthetic bacteria.


Assuntos
Antifúngicos/farmacologia , Proteínas de Bactérias/biossíntese , Cianobactérias/metabolismo , Ciclodextrinas/biossíntese , Cianobactérias/genética , Genes Bacterianos , Dados de Sequência Molecular
14.
Proc Natl Acad Sci U S A ; 111(25): 9259-64, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927540

RESUMO

Nonribosomal peptides and polyketides are a diverse group of natural products with complex chemical structures and enormous pharmaceutical potential. They are synthesized on modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzyme complexes by a conserved thiotemplate mechanism. Here, we report the widespread occurrence of NRPS and PKS genetic machinery across the three domains of life with the discovery of 3,339 gene clusters from 991 organisms, by examining a total of 2,699 genomes. These gene clusters display extraordinarily diverse organizations, and a total of 1,147 hybrid NRPS/PKS clusters were found. Surprisingly, 10% of bacterial gene clusters lacked modular organization, and instead catalytic domains were mostly encoded as separate proteins. The finding of common occurrence of nonmodular NRPS differs substantially from the current classification. Sequence analysis indicates that the evolution of NRPS machineries was driven by a combination of common descent and horizontal gene transfer. We identified related siderophore NRPS gene clusters that encoded modular and nonmodular NRPS enzymes organized in a gradient. A higher frequency of the NRPS and PKS gene clusters was detected from bacteria compared with archaea or eukarya. They commonly occurred in the phyla of Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria in bacteria and the phylum of Ascomycota in fungi. The majority of these NRPS and PKS gene clusters have unknown end products highlighting the power of genome mining in identifying novel genetic machinery for the biosynthesis of secondary metabolites.


Assuntos
Bactérias/genética , Evolução Molecular , Genoma Bacteriano , Policetídeo Sintases/genética , Policetídeos , Sideróforos/genética , Família Multigênica/fisiologia , Estrutura Terciária de Proteína , Análise de Sequência de Proteína/métodos
15.
Proc Natl Acad Sci U S A ; 111(18): E1909-17, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24742428

RESUMO

Cyanobacteria produce a wide variety of cyclic peptides, including the widespread hepatotoxins microcystins and nodularins. Another class of peptides, cyclic glycosylated lipopeptides called hassallidins, show antifungal activity. Previously, two hassallidins (A and B) were reported from an epilithic cyanobacterium Hassallia sp. and found to be active against opportunistic human pathogenic fungi. Bioinformatic analysis of the Anabaena sp. 90 genome identified a 59-kb cryptic inactive nonribosomal peptide synthetase gene cluster proposed to be responsible for hassallidin biosynthesis. Here we describe the hassallidin biosynthetic pathway from Anabaena sp. SYKE748A, as well as the large chemical variation and common occurrence of hassallidins in filamentous cyanobacteria. Analysis demonstrated that 20 strains of the genus Anabaena carry hassallidin synthetase genes and produce a multitude of hassallidin variants that exhibit activity against Candida albicans. The compounds discovered here were distinct from previously reported hassallidins A and B. The IC50 of hassallidin D was 0.29-1.0 µM against Candida strains. A large variation in amino acids, sugars, their degree of acetylation, and fatty acid side chain length was detected. In addition, hassallidins were detected in other cyanobacteria including Aphanizomenon, Cylindrospermopsis raciborskii, Nostoc, and Tolypothrix. These compounds may protect some of the most important bloom-forming and globally distributed cyanobacteria against attacks by parasitic fungi.


Assuntos
Anabaena/metabolismo , Antifúngicos/metabolismo , Cianobactérias/metabolismo , Glicolipídeos/metabolismo , Glicopeptídeos/metabolismo , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Anabaena/genética , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Cianobactérias/genética , Genes Bacterianos , Glicolipídeos/química , Glicolipídeos/genética , Glicopeptídeos/química , Glicopeptídeos/genética , Humanos , Lipopeptídeos/química , Lipopeptídeos/genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Estrutura Molecular , Família Multigênica , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Filogenia
16.
Environ Microbiol ; 18(11): 3728-3741, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26954535

RESUMO

Talaromyces islandicus ('Penicillium islandicum') is a widespread foodborne mold that produces numerous secondary metabolites, among them potent mycotoxins belonging to different chemical classes. A notable metabolite is the hepatotoxic and carcinogenic pentapeptide cyclochlorotine that contains the unusual amino acids ß-phenylalanine, 2-aminobutyrate and 3,4-dichloroproline. Although the chemical structure has been known for over five decades, nothing is known about the biosynthetic pathway of cyclochlorotine. Bioinformatic analysis of the recently sequenced genome of T. islandicus identified a wealth of gene clusters potentially coding for the synthesis of secondary metabolites. Here, we show by RNA interference-mediated gene silencing that a nonribosomal peptide synthetase, CctN, is responsible for the synthesis of cyclochlorotine. Moreover, we identified novel cyclochlorotine chemical variants, whose production also depended on cctN expression. Surprisingly, the halogenase required for cyclochlorotine biosynthesis is not encoded in the cct cluster. Nonetheless, our findings enabled us to propose a detailed model for cyclochlorotine biosynthesis. In addition, comparative genomics revealed that cct-like clusters are present in all of the sequenced Talaromyces strains indicating a high prevalence of cyclochlorotine production ability.


Assuntos
Proteínas Fúngicas/metabolismo , Micotoxinas/biossíntese , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/biossíntese , Talaromyces/metabolismo , Proteínas Fúngicas/genética , Penicillium/metabolismo , Peptídeo Sintases/genética , Fenilalanina/metabolismo , Talaromyces/enzimologia , Talaromyces/genética
17.
Proc Natl Acad Sci U S A ; 110(3): 1053-8, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23277585

RESUMO

The cyanobacterial phylum encompasses oxygenic photosynthetic prokaryotes of a great breadth of morphologies and ecologies; they play key roles in global carbon and nitrogen cycles. The chloroplasts of all photosynthetic eukaryotes can trace their ancestry to cyanobacteria. Cyanobacteria also attract considerable interest as platforms for "green" biotechnology and biofuels. To explore the molecular basis of their different phenotypes and biochemical capabilities, we sequenced the genomes of 54 phylogenetically and phenotypically diverse cyanobacterial strains. Comparison of cyanobacterial genomes reveals the molecular basis for many aspects of cyanobacterial ecophysiological diversity, as well as the convergence of complex morphologies without the acquisition of novel proteins. This phylum-wide study highlights the benefits of diversity-driven genome sequencing, identifying more than 21,000 cyanobacterial proteins with no detectable similarity to known proteins, and foregrounds the diversity of light-harvesting proteins and gene clusters for secondary metabolite biosynthesis. Additionally, our results provide insight into the distribution of genes of cyanobacterial origin in eukaryotic nuclear genomes. Moreover, this study doubles both the amount and the phylogenetic diversity of cyanobacterial genome sequence data. Given the exponentially growing number of sequenced genomes, this diversity-driven study demonstrates the perspective gained by comparing disparate yet related genomes in a phylum-wide context and the insights that are gained from it.


Assuntos
Cianobactérias/classificação , Cianobactérias/genética , Genoma Bacteriano , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação à Clorofila/química , Proteínas de Ligação à Clorofila/genética , Proteínas de Ligação à Clorofila/metabolismo , Cianobactérias/metabolismo , Evolução Molecular , Variação Genética , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Filogenia , Plastídeos/genética , Homologia de Sequência de Aminoácidos
18.
Angew Chem Int Ed Engl ; 55(11): 3596-9, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26846478

RESUMO

Cyanobactins are a rapidly growing family of linear and cyclic peptides produced by cyanobacteria. Kawaguchipeptins A and B, two macrocyclic undecapeptides reported earlier from Microcystis aeruginosa NIES-88, are shown to be products of the cyanobactin biosynthetic pathway. The 9 kb kawaguchipeptin (kgp) gene cluster was identified in a 5.26 Mb draft genome of Microcystis aeruginosa NIES-88. We verified that this gene cluster is responsible for the production of the kawaguchipeptins through heterologous expression of the kgp gene cluster in Escherichia coli. The KgpF prenyltransferase was overexpressed and was shown to prenylate C-3 of Trp residues in both linear and cyclic peptides in vitro. Our findings serve to further enhance the structural diversity of cyanobactins to include tryptophan-prenylated cyclic peptides.


Assuntos
Dimetilaliltranstransferase/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Dimetilaliltranstransferase/química , Escherichia coli/genética , Genoma Bacteriano , Microcystis/genética , Família Multigênica
19.
Appl Environ Microbiol ; 81(15): 5212-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26025890

RESUMO

Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone.


Assuntos
Anabaena/efeitos dos fármacos , Perfilação da Expressão Gênica , Fósforo/metabolismo , Proteoma/análise , Estresse Fisiológico , Anabaena/crescimento & desenvolvimento , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Redes e Vias Metabólicas/genética , RNA Bacteriano/química , RNA Bacteriano/genética , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
20.
Mar Drugs ; 13(10): 6319-35, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26473888

RESUMO

Cyanobacterial harmful algal blooms represent one of the most conspicuous waterborne microbial hazards in aquatic environments mostly due to the production of toxic secondary metabolites, mainly microcystins (MCs). Other bioactive peptides are frequently found in cyanobacterial blooms, yet their concentration and ecological relevance is still unknown. In this paper we studied the presence and concentration of cyanobacterial peptides (microcystins, anabaenopeptins, anabaenopeptilides) in 36 Greek freshwater bodies, using HPLC-DAD, ELISA, and PP1IA. Microcystins were found in more than 90% of the samples investigated, indicating that microcystin-producing strains seem to also occur in lakes without blooms. Microcystins MC-RR, MC-LR, and MC-YR were the main toxin constituents of the bloom samples. Anabaenopeptin A and B were predominant in some samples, whereas anabaenopeptolide 90A was the only peptide found in Lake Mikri Prespa. The intracellular concentrations of anabaenopeptins produced by cyanobacterial bloom populations are determined for the first time in this study; the high (>1000 µg·L(-1)) anabaenopeptin concentration found indicates there may be some impacts, at least on the ecology and the food web structure of the aquatic ecosystems. The maximum intracellular MC values measured in Lakes Kastoria and Pamvotis, exceeding 10,000 µg·L(-1), are among the highest reported.


Assuntos
Cianobactérias/metabolismo , Proliferação Nociva de Algas , Microcistinas/isolamento & purificação , Peptídeos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental/métodos , Ensaio de Imunoadsorção Enzimática , Água Doce , Grécia , Humanos , Microcistinas/análise , Peptídeos/análise , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA