RESUMO
Wnt1-inducible signaling protein 1 (WISP1/CCN4) is a secreted matricellular protein that is implicated in lung and airway remodeling. The macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been associated with chronic lung diseases. In this study, we aimed to investigate the WISP1 signaling pathway and its ability to induce the expression of MIF in primary cultures of fibroblasts from normal human lungs (HLFs). Our results showed that WISP1 significantly stimulated the expression of MIF in a concentration- and time-dependent fashion. In WISP1-induced expression of MIF, αvß5-integrin and chondroitin sulfate proteoglycans as well as Src tyrosine kinases, MAP kinases, phosphatidylinositol 3-kinase/Akt, PKC, and NF-κB were involved. WISP1-induced expression of MIF was attenuated in the presence of the Src kinase inhibitor PP2 or the MIF tautomerase activity inhibitor ISO-1. Moreover, WISP1 significantly increased the phosphorylation and activation of EGF receptor (EGFR) through transactivation by Src kinases. WISP1 also induced the expression of MIF receptor CD74 and coreceptor CD44, through which MIF exerts its effects on HLFs. In addition, it was found that MIF induced its own expression, as well as its receptors CD74/CD44, acting in an autocrine manner. Finally, WISP1-induced MIF promoted the expression of cyclooxygenase 2, prostaglandin E2, IL-6, and matrix metalloproteinase-2 demonstrating the regulatory role of WISP1-MIF axis in lung inflammation and remodeling involving mainly integrin αvß5, Src kinases, PKC, NF-κB, and EGFR. The specific signaling pathways involved in WISP1-induced expression of MIF may prove to be excellent candidates for novel targets to control inflammation in chronic lung diseases.NEW & NOTEWORTHY The present study demonstrates for the first time that Wnt1-inducible signaling protein 1 (WISP1) regulates migration inhibitory factor (MIF) expression and activity and identifies the main signaling pathways involved. The newly discovered WISP1-MIF axis may drive lung inflammation and could result in the design of novel targeted therapies in inflammatory lung diseases.
Assuntos
Pneumopatias , Fatores Inibidores da Migração de Macrófagos , Pneumonia , Humanos , Receptores ErbB , Pulmão , Fatores Inibidores da Migração de Macrófagos/genética , Metaloproteinase 2 da Matriz , NF-kappa B , Transdução de Sinais , Quinases da Família srcRESUMO
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, ß-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Assuntos
Asma , Proteínas de Sinalização Intercelular CCN , Fatores Inibidores da Migração de Macrófagos , Proteínas Proto-Oncogênicas , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Proteínas de Sinalização Intercelular CCN/metabolismo , Asma/metabolismo , Asma/imunologia , Asma/tratamento farmacológico , Fatores Inibidores da Migração de Macrófagos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Inflamação/metabolismo , Transdução de Sinais , Oxirredutases IntramolecularesRESUMO
Hyaluronan is one of the most abundant macromolecules of the extracellular matrix and regulates several physiological cell and tissue properties. However, hyaluronan has been shown to accumulate together with its receptors in various cancers. In tumors, accumulation of hyaluronan system components (hyaluronan synthesizing/degrading enzymes and interacting proteins) associates with poor outcomes for the patients. In this article, we review the main roles of hyaluronan in normal physiology and cancer and further discuss the targeting of hyaluronan system as an applicable therapeutic strategy.
Assuntos
Ácido Hialurônico , Neoplasias , Matriz Extracelular/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Neoplasias/metabolismoRESUMO
Hyaluronan-rich matrices are abundant in ECM and are involved in biological processes, such as cell growth and migration. Hyaluronan is synthesized by the hyaluronan synthase family of enzymes, HAS1, HAS2 and HAS3; the HAS1 and HAS3 genes give rise to different transcripts through alternative splicing, and the HAS2 gene to a non-coding RNA antisense transcript in addition to the protein-coding transcript. Biosynthesis of hyaluronan increases during inflammation and cancer and is regulated by cytokines and growth factors. In addition to extracellular hyaluronan-rich matrices, cytoplasmic and nuclear forms of hyaluronan have been detected in normal and pathological processes. Extra- and intra-cellular hyaluronan binds to hyaluronan binding proteins, such as CD44, RHAMM, CDC37 and USP17, affecting cellular behavior. Although neither the exact mechanisms by which hyaluronan is present in the intracellular compartments, nor its function at these sites are currently understood, there are evidence that intracellular hyaluronan has important regulatory roles during cell cycle, cell motility, RNA translation and splicing, and autophagy.
Assuntos
Ácido Hialurônico/metabolismo , Espaço Intracelular/metabolismo , Animais , Transporte Biológico , Biomarcadores , Vias Biossintéticas , Suscetibilidade a Doenças , Matriz Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Ligação ProteicaRESUMO
Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.
Assuntos
Neoplasias da Mama/genética , Neovascularização Patológica/genética , Proteoglicanas/biossíntese , Pesquisa Translacional Biomédica , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Proteoglicanas/antagonistas & inibidores , Proteoglicanas/uso terapêutico , Transdução de Sinais/genética , Microambiente Tumoral/genéticaRESUMO
The multifunctional protein nucleolin (NCL) is overexpressed on the surface of activated endothelial and tumor cells and mediates the stimulatory actions of several angiogenic growth factors, such as pleiotrophin (PTN). Because α(v)ß(3) integrin is also required for PTN-induced cell migration, the aim of the present work was to study the interplay between NCL and α(v)ß(3) by using biochemical, immunofluorescence, and proximity ligation assays in cells with genetically altered expression of the studied molecules. Interestingly, cell surface NCL localization was detected only in cells expressing α(v)ß(3) and depended on the phosphorylation of ß(3) at Tyr(773) through receptor protein-tyrosine phosphatase ß/ζ (RPTPß/ζ) and c-Src activation. Downstream of α(v)ß(3,) PI3K activity mediated this phenomenon and cell surface NCL was found to interact with both α(v)ß(3) and RPTPß/ζ. Positive correlation of cell surface NCL and α(v)ß(3) expression was also observed in human glioblastoma tissue arrays, and inhibition of cell migration by cell surface NCL antagonists was observed only in cells expressing α(v)ß(3). Collectively, these data suggest that both expression and ß(3) integrin phosphorylation at Tyr(773) determine the cell surface localization of NCL downstream of the RPTPß/ζ/c-Src signaling cascade and can be used as a biomarker for the use of cell surface NCL antagonists as anticancer agents.
Assuntos
Movimento Celular , Células Endoteliais/citologia , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Células CHO , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Cricetinae , Citocinas/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Microscopia de Fluorescência/métodos , Neovascularização Patológica , Fosforilação , Ratos , Transdução de Sinais , NucleolinaRESUMO
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Assuntos
Glicosaminoglicanos , Humanos , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Animais , Heparitina Sulfato/metabolismo , Heparitina Sulfato/química , Proteoglicanas/metabolismo , Dermatan Sulfato/metabolismo , Dermatan Sulfato/química , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ácido Hialurônico/metabolismo , Ácido Hialurônico/química , Sulfato de Queratano/metabolismo , Sulfato de Queratano/química , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/químicaRESUMO
CD44 is a single-chain transmembrane receptor that exists in multiple forms due to alternative mRNA splicing and post-translational modifications. CD44 is the main cell surface receptor of hyaluronan as well as other extracellular matrix molecules, cytokines, and growth factors that play important roles in physiological processes (such as hematopoiesis and lymphocyte homing) and the progression of various diseases, the predominant one being cancer. Currently, CD44 is an established cancer stem cell marker in several tumors, implying a central functional role in tumor biology. The present review aims to highlight the contribution of the CD44 short cytoplasmic tail, which is devoid of any enzymatic activity, in the extraordinary functional diversity of the receptor. The interactions of CD44 with cytoskeletal proteins through specific structural motifs within its intracellular domain drives cytoskeleton rearrangements and affects the distribution of organelles and transport of molecules. Moreover, the CD44 intracellular domain specifically interacts with various cytoplasmic effectors regulating cell-trafficking machinery, signal transduction pathways, the transcriptome, and vital cell metabolic pathways. Understanding the cell type- and context-specificity of these interactions may unravel the high complexity of CD44 functions and lead to novel improved therapeutic interventions.
RESUMO
Hyaluronan is one of the most influential components of the extracellular matrix. It is involved in the regulation of normal tissue function and architecture, while its metabolism is perturbed in a multitude of human diseases like inflammation, cancer, and viral infection. Given the implication of hyaluronan in a vast array of diseases, we describe here assays that can be utilized to study the quantity, size, subcellular localization, and binding capacity of hyaluronan by cells as well as its interactions with its major cellular receptor, CD44. Hopefully, these protocols will provide researchers with useful tools to study the complex hyaluronan biology.
Assuntos
Receptores de Hialuronatos , Ácido Hialurônico , Humanos , Ácido Hialurônico/metabolismo , Receptores de Hialuronatos/metabolismo , Matriz Extracelular/metabolismoRESUMO
Breast cancer is a common cancer in women. Breast cancer cells synthesize large amounts of hyaluronan to assist their proliferation, survival, migration and invasion. Accumulation of hyaluronan and overexpression of its receptor CD44 and hyaluronidase TMEM2 in breast tumors correlate with tumor progression and reduced overall survival of patients. Currently, the only known small molecule inhibitor of hyaluronan synthesis is 4-methyl-umbelliferone (4-MU). Due to the importance of hyaluronan for breast cancer progression, our aim was to identify new, potent and chemically distinct inhibitors of its synthesis. Here, we report a new small molecule inhibitor of hyaluronan synthesis, the thymidine analog 5'-Deoxy-5'-(1,3-Diphenyl-2-Imidazolidinyl)-Thymidine (DDIT). This compound is more potent than 4-MU and displays significant anti-tumorigenic properties. Specifically, DDIT inhibits breast cancer cell proliferation, migration, invasion and cancer stem cell self-renewal by suppressing HAS-synthesized hyaluronan. DDIT appears as a promising lead compound for the development of inhibitors of hyaluronan synthesis with potential usefulness in breast cancer treatment.
RESUMO
Hyaluronan is a component of the extracellular matrix, which affects tissue homeostasis. In this study, we investigated the regulatory mechanisms of one of the hyaluronan-synthesizing enzymes, HAS2. Ectopic expression of Flag- and 6myc-HAS2 in COS-1 cells followed by immunoprecipitation and immunoblotting revealed homodimers; after co-transfection with Flag-HAS3, also heterodimers were seen. Furthermore, the expressed HAS2 was ubiquitinated. We identified one acceptor site for ubiquitin on lysine residue 190. Mutation of this residue led to inactivation of the enzymatic activity of HAS2. Interestingly, K190R-mutated HAS2 formed dimers with wt HAS2 and quenched the activity of wt HAS2, thus demonstrating a functional role of the dimeric configuration.
Assuntos
Regulação Enzimológica da Expressão Gênica , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Ubiquitina/química , Animais , Sítios de Ligação , Células COS , Catálise , Linhagem Celular Transformada , Chlorocebus aethiops , Dimerização , Hialuronan Sintases , Camundongos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Mutação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
BACKGROUND: Mammographic density (MD) and malignant-appearing microcalcifications (MAMCs) represent the earliest mammographic findings of non-palpable breast carcinomas. Matrix proteoglycans versican and decorin are frequently over-expressed in various malignancies and are differently involved in the progression of cancer. In the present study, we have evaluated the expression of versican and decorin in non-palpable breast carcinomas and their association with high risk mammographic findings and tumor characteristics. METHODS: Three hundred and ten patients with non-palpable suspicious breast lesions, detected during screening mammography, were studied. Histological examination was carried out and the expression of decorin, versican, estrogen receptor α (ERα), progesterone receptor (PR) and c-erbB2 (HER-2/neu) was assessed by immunohistochemistry. RESULTS: Histological examination showed 83 out of 310 (26.8%) carcinomas of various subtypes. Immunohistochemistry was carried out in 62/83 carcinomas. Decorin was accumulated in breast tissues with MD and MAMCs independently of the presence of malignancy. In contrast, versican was significantly increased only in carcinomas with MAMCs (median ± SE: 42.0 ± 9.1) and MD (22.5 ± 10.1) as compared to normal breast tissue with MAMCs (14.0 ± 5.8), MD (11.0 ± 4.4) and normal breast tissue without mammographic findings (10.0 ± 2.0). Elevated levels of versican were correlated with higher tumor grade and invasiveness in carcinomas with MD and MAMCs, whereas increased amounts of decorin were associated with in situ carcinomas in MAMCs. Stromal deposition of both proteoglycans was related to higher expression of ERα and PR in tumor cells only in MAMCs. CONCLUSIONS: The specific accumulation of versican in breast tissue with high MD and MAMCs only in the presence of malignant transformation and its association with the aggressiveness of the tumor suggests its possible use as molecular marker in non-palpable breast carcinomas.
Assuntos
Neoplasias da Mama/metabolismo , Calcinose/metabolismo , Decorina/metabolismo , Mamografia , Versicanas/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Calcinose/diagnóstico por imagem , Calcinose/patologia , Carcinoma in Situ/diagnóstico por imagem , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Palpação , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismoRESUMO
The hyaluronan receptor CD44 can undergo proteolytic cleavage in two steps, leading to the release of its intracellular domain; this domain is translocated to the nucleus, where it affects the transcription of target genes. We report that CD44 cleavage in A549 lung cancer cells and other cells is promoted by transforming growth factor-beta (TGFß) in a manner that is dependent on ubiquitin ligase tumor necrosis factor receptor-associated factor 4 or 6 (TRAF4 or TRAF6, respectively). Stem-like A549 cells grown in spheres displayed increased TRAF4-dependent expression of CD44 variant isoforms, CD44 cleavage, and hyaluronan synthesis. Mechanistically, TRAF4 activated the small GTPase RAC1. CD44-dependent migration of A549 cells was inhibited by siRNA-mediated knockdown of TRAF4, which was rescued by the transfection of a constitutively active RAC1 mutant. Our findings support the notion that TRAF4/6 mediates pro-tumorigenic effects of CD44, and suggests that inhibitors of CD44 signaling via TRAF4/6 and RAC1 may be beneficial in the treatment of tumor patients.
RESUMO
Breast cancer exists in multiple subtypes some of which still lack a targeted and effective therapy. Cold atmospheric plasma (CAP) has been proposed as an emerging anti-cancer treatment modality. In this study, we investigated the effects of direct and indirect CAP treatment driven by the advantageous nanosecond pulsed discharge on breast cancer cells of different malignant phenotypes and estrogen receptor (ER) status, a major factor in the prognosis and therapeutic management of breast cancer. The main CAP reactive species in liquid (i.e. H2O2, NO 2 - /NO 3 - ) and gas phase were determined as a function of plasma operational parameters (i.e. treatment time, pulse voltage and frequency), while pre-treatment with the ROS scavenger NAC revealed the impact of ROS in the treatment. CAP treatment induced intense phenotypic changes and apoptosis in both ER+ and ER- cells, which is associated with the mitochondrial pathway as evidenced by the increased Bax/Bcl-2 ratio and cleavage of PARP-1. Interestingly, CAP significantly reduced CD44 protein expression (a major cancer stem cell marker and matrix receptor), while differentially affected the expression of proteases and inflammatory mediators. Collectively, the findings of the present study suggest that CAP suppresses breast cancer cell growth and regulates several effectors of the tumor microenvironment and thus it could represent an efficient therapeutic approach for distinct breast cancer subtypes.
RESUMO
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Assuntos
Matriz Extracelular/metabolismo , Animais , Matriz Extracelular/química , HumanosRESUMO
CD44 is a cell surface receptor for hyaluronan which affects cell adhesion and migration, and has been implicated in chronic inflammation and in tumorigenesis. To elucidate the molecular mechanisms underlying its multiple functions, we used a peptide-based pull-down assay to identify proteins that interact with CD44. Nonphosphorylated or phosphorylated peptides from the intracellular CD44 C-terminus, were immobilized and used as baits. Interacting proteins were subjected to SDS-gel electrophoresis and were identified by MALDI-TOF mass spectrometry. Several interaction partners were identified, including proteins involved in cytoskeletal reorganization, transcription, endocytosis, and intracellular transport. An endogenous complex between CD44 and one of the interacting proteins, the actin binding protein IQGAP1, was demonstrated in several normal and transformed cell types.
Assuntos
Receptores de Hialuronatos/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular , Transformação Celular Neoplásica , Células Cultivadas , Feminino , Humanos , Ácido Hialurônico/metabolismo , Masculino , Ligação Proteica , Estrutura Terciária de Proteína/fisiologia , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Ativadoras de ras GTPase/metabolismoRESUMO
The oncogenic role of hyaluronan in several aspects of tumor biology has been well established. Recent studies by us and others suggest that inhibition of hyaluronan synthesis could represent an emerging therapeutic approach with significant clinical relevance in controlling different breast cancer subtypes, including triple-negative breast cancer. Epidemiological and preclinical studies have revealed the therapeutic potential of aspirin (acetyl salicylate), a classical anti-inflammatory drug, in patients with cancer. However, the underlying molecular mechanisms remain unknown. The present study demonstrates that salicylate, a break down product of aspirin in vivo, alters the organization of hyaluronan matrices by affecting the expression levels of hyaluronan synthesizing (HAS1, 2, 3) and degrading (HYAL-1, -2) enzymes, and that of hyaluronan receptor CD44. In particular, salicylate was found to potently activate AMPK, a kinase known to inhibit HAS2 activity, and caused a dose-dependent decrease of cell associated (intracellular and membrane-bound) as well as secreted hyaluronan, followed by the down-regulation of HAS2 and the induction of HYAL-2 and CD44 in metastatic breast cancer cells. These salicylate-mediated effects were associated with the redistribution of CD44 and actin cytoskeleton that resulted in a less motile cell phenotype. Interestingly, salicylate inhibited metastatic breast cancer cell proliferation and growth by inducing cell growth arrest without signs of apoptosis as evidenced by the substantial decrease of cyclin D1 protein and the absence of cleaved caspase-3, respectively. Collectively, our study offers a possible direction for the development of new matrix-based targeted treatments of metastatic breast cancer subtypes via inhibition of hyaluronan, a pro-angiogenic, pro-inflammatory and tumor promoting glycosaminoglycan.
RESUMO
Proteoglycans (PGs) are widely expressed in all areas of the brain. In this study, the keratan sulfate-containing PGs (KS-PGs) from cerebrum (CB), cerebellum (CL) and brainstem (BS) of young sheep brain were isolated, purified and characterized. The amount of KS-PGs in CL was significantly lower than that in CB and BS. KS-PGs were characterized by increased extent of glycosylation and heterogeneity of KS chains in CL. Western blot analyses demonstrated the presence of the KS-PGs phosphacan, SV2A and SV2B isoforms of synaptic vesicle proteoglycan in all three areas of the young sheep brain. Phosphacan predominated in BS and CB, showing significant molecular heterogeneity. SV2A and SV2B were found in two forms of high and low molecular sizes according to their extent of glycosylation in sheep brain. SV2A predominated in CL, where forms with very high molecular sizes were detected. Immunohistochemical examination revealed that SV2A was localized in the extracellular matrix of both gray and white matter. In contrast, phosphacan and SV2B were mainly localized in the white matter in all brain regions. The results of the present study demonstrated that KS-PGs are present in the three areas of the sheep brain, showing significant variations in their content, structure and localization among the distinct areas. These differences may be important for the physiology of the brain.
Assuntos
Química Encefálica , Sulfato de Queratano/análise , Proteoglicanas/isolamento & purificação , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/análise , Vesículas Sinápticas/química , Animais , Cromatografia em Gel , Isoformas de Proteínas/análise , Proteoglicanas/química , OvinosRESUMO
The tightly regulated biosynthesis and catabolism of the glycosaminoglycan hyaluronan, as well as its role in organizing tissues and cell signaling, is crucial for the homeostasis of tissues. Overexpression of hyaluronan plays pivotal roles in inflammation and cancer, and markedly high serum and tissue levels of hyaluronan are noted under such pathological conditions. This review focuses on the complexity of the regulation at transcriptional and posttranslational level of hyaluronan synthetic enzymes, and the outcome of their aberrant expression and accumulation of hyaluronan in clinical conditions, such as systemic B-cell cancers, aggressive breast carcinomas, metabolic diseases and virus infection.
Assuntos
Hialuronan Sintases/metabolismo , Ácido Hialurônico/biossíntese , Inflamação/metabolismo , Neoplasias/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Hialuronan Sintases/genética , Ácido Hialurônico/sangue , Processamento de Proteína Pós-Traducional , Transdução de SinaisRESUMO
The prominent role of CD44 in tumor cell signaling together with its establishment as a cancer stem cell (CSC) marker for various tumor entities imply a key role for CD44 in CSC functional properties. Hyaluronan, the main ligand of CD44, is a major constituent of CSC niche and, therefore, the hyaluronan-CD44 signaling axis is of functional importance in this special microenvironment. This review aims to provide recent advances in the importance of hyaluronan-CD44 interactions in the acquisition and maintenance of a CSC phenotype. Hyaluronan-CD44 axis has a substantial impact on stemness properties of CSCs and drug resistance through induction of EMT program, oxidative stress resistance, secretion of extracellular vesicles/exosomes and epigenetic control. Potential therapeutic approaches targeting CSCs based on the hyaluronan-CD44 axis are also presented.