Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Soft Matter ; 13(13): 2448-2452, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28277573

RESUMO

We demonstrate transport of microparticles by rapid movement of a laser spot in a thin layer of a nematic liquid crystal. The transport is achieved by fluid flow, caused by two different mechanisms. The thermoviscous expansion effect induces colloidal transport in the direction opposite to the laser movement, whereas thermally induced local melting of the liquid crystal pulls the particles in the direction of the laser movement. We demonstrate control of colloidal transport by changing the speed of the laser trap movement and the laser power. We anticipate that complex optofluidic colloidal transport could be realized in the nematic liquid crystal using a channel-free optofluidic approach.

2.
Eur Phys J E Soft Matter ; 39(10): 100, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27770314

RESUMO

We study topological defect annihilation on a glass fibre with homeotropic surface anchoring of nematic liquid crystal molecules. The fibre is set parallel to the nematic director of a planar cell with variable thickness and we create pairs of Saturn ring and Saturn anti-ring using the laser tweezers. In thick cells we observe in the whole region of defect separation a Coulomb-like pair attraction with no background force, [Formula: see text] with [Formula: see text]. In cells with thickness comparable to glass fibre diameter, we observe the Coulomb-like attraction only at small separations of the defect pair. For separations larger than the fibre diameter, the pair interaction force is independent of separation. This string-like force is attributed to the formation of defect lines, connecting both monopoles and are indeed visible only on extremely confined fibre, where the fibre diameter is practically equal to the nematic layer thickness. Numerical simulations confirm the formation of defect lines connecting both rings.

3.
Eur Phys J E Soft Matter ; 38(3): 23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25813607

RESUMO

We present a detailed analysis of topological binding and elastic interactions between a long, and micrometer-diameter fiber, and a microsphere in a homogeneously aligned nematic liquid crystal. Both objects are surface treated to produce strong perpendicular anchoring of the nematic liquid crystal. We use the opto-thermal micro-quench of the laser tweezers to produce topological defects with prescribed topological charge, such as pairs of a Saturn ring and an anti-ring, hyperbolic and radial hedgehogs on a fiber, as well as zero-charge loops. We study the entanglement and topological charge interaction between the topological defects of the fiber and sphere and we observe a huge variety of different entanglement topologies and defect-mediated elastic bindings. We explain all observed phenomena with simple topological rule: like topological charges repel each other and opposite topological charges attract. These binding mechanisms not only demonstrate the fascinating topology of nematic colloids, but also open a novel route to the assembly of very complex topological networks of fibers, spheres and other objects for applications in liquid crystal photonics.

4.
Opt Express ; 21(1): 724-9, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388965

RESUMO

We demonstrate laser-driven microflow-induced orientational change (homeotropic to planar) in a dye-doped nematic liquid crystal. The homeotropic to planar director alignment is achieved in unrubbed cells in the thermal hysteresis range of a discontinuous anchoring reorientation transition due to the local heating by light absorption in dye-doped sample. Various bistable patterns were recorded in the cell by a programmable laser tweezers. The width of the patterns depend on the scanning speed of the tightly focussed laser beam and the minimum width obtained is approximately equal to 0.57µm which is about 35 times smaller than the earlier report in the rubbed cells. We show that the motion of the microbeam spot causes local flow as a result the liquid crystal director is aligned along that direction.

5.
Phys Rev Lett ; 110(17): 177801, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679780

RESUMO

We show that forces between two colloidal particles in a thin layer of a chiral nematic liquid crystal strongly depend on the chirality of the liquid crystal. The observed pair potentials are attractive, but are oscillatory functions of colloidal separation. The number and the position of local energy minima increase with increasing chirality. The pair interaction is the strongest for the pitch equal to the colloidal diameter and decreases with increasing chirality. We show that the chirality of the medium is responsible for this oscillatory nature and screening of the colloidal interaction in the far and near field. The measurements are in agreement with numerical calculations using Landau-de Gennes theory.

6.
Eur Phys J E Soft Matter ; 36(9): 97, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24008405

RESUMO

We study the winding and unwinding of Saturn ring defects around silica microspheres with homeotropic surface anchoring in a cholesteric liquid crystal with a variable pitch. We use mixtures of a nematic liquid crystal 5CB and various photoresponsive chiral dopants to vary the helical pitch and sense of the helical winding by illuminating the mixtures with UV or visible light. Upon illumination, we observe motion of the Grandjean-Cano disclination lines in wedge-like cells. When the line touches the colloidal particle, we observe topological reconstruction of the Grandjean-Cano line and the Saturn ring. The result of this topological reconstruction is either an increase or decrease of the degree of winding of the Saturn ring around the colloidal particle. This phenomenon is similar to topological rewiring of -1/2 disclination lines, observed recently in chiral nematic colloids.

7.
Eur Phys J E Soft Matter ; 33(4): 291-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21057972

RESUMO

Laser tweezers have been used to drive the oscillations of a chain of entangled colloidal particles in the nematic liquid crystal 5CB. The amplitude and phase of light-driven oscillations have been determined for the motion of individual colloidal particles. The collective motion of 4.8µm silica particles is highly damped for a driving frequency above 0.5Hz. The results were compared to an effective bead-spring model, where the motion of elastically coupled particles is hindered by viscous damping and hydrodynamic coupling. Qualitative agreement between theory and experiment was obtained.


Assuntos
Coloides/efeitos da radiação , Luz , Cristais Líquidos/efeitos da radiação , Nanopartículas/química , Coloides/química , Elasticidade , Hidrodinâmica , Cristais Líquidos/química , Modelos Químicos , Dióxido de Silício/química , Viscosidade
8.
Langmuir ; 25(20): 12092-100, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19757827

RESUMO

In this paper, we examine directed self-assembly in a 2D binary system of dipolar and quadrupolar colloidal particles with normal surface boundary conditions, dispersed in the nematic liquid crystal. Using the laser tweezers, we assembled a large variety of stable 2D colloidal crystal structures. In all analyzed structures, the particles, their surface treatment and the cell conditions were the same, which gives us the ability to systematically follow the evolution of colloidal assembly when many particles are present. We present an analogy between molecular self-assembly and organization of colloidal microspheres in liquid crystalline medium to extend the strategy for designing colloidal crystalline structures of different level of complexity.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 1): 031705, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18517404

RESUMO

We present experimental and theoretical study of colloidal interactions in quadrupolar nematic liquid crystal colloids, confined to a thin planar nematic cell. Using the laser tweezers, the particles have been positioned in the vicinity of other colloidal particles and their interactions have been determined using particle tracking video microscopy. Several types of interactions have been analyzed: (i) quadrupolar pair interaction, (ii) the interaction of an isolated quadrupole with a quadrupolar chain, and (iii) the interaction of an isolated quadrupolar colloidal particle with a two-dimensional (2D) quadrupolar crystallite. In all cases, the interactions are of the order of several 100k(B)T for 2 microm particles, which gives rise to relatively stable 2D colloidal crystals. The experimental results are compared to the predictions of Landau-de Gennes theory and we find a relatively good qualitative agreement.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(6 Pt 1): 061706, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18643286

RESUMO

We show that colloidal superstructures could be assembled in mixtures of large and small colloidal particles dispersed in a nematic liquid crystal. Using elastic interaction of small colloidal particles with the disclination lines we succeed to demonstrate how one can decorate with small particles a topological matrix of defect rings and loops formed by an array of large colloidal particles. Our simulations show that this concept of colloidal self-assembly in nematics could be extended down to the nanoscale particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA