Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Development ; 144(17): 3102-3113, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760813

RESUMO

The extracellular matrix (ECM) regulates cell migration and sculpts organ shape. AdamTS proteins are extracellular metalloproteases known to modify ECM proteins and promote cell migration, but demonstrated roles for AdamTS proteins in regulating CNS structure and ensuring cell lineages remain fixed in place have not been uncovered. Using forward genetic approaches in Drosophila, we find that reduction of AdamTS-A function induces both the mass exodus of neural lineages out of the CNS and drastic perturbations to CNS structure. Expressed and active in surface glia, AdamTS-A acts in parallel to perlecan and in opposition to viking/collagen IV and ßPS-integrin to keep CNS lineages rooted in place and to preserve the structural integrity of the CNS. viking/collagen IV and ßPS-integrin are known to promote tissue stiffness and oppose the function of perlecan, which reduces tissue stiffness. Our work supports a model in which AdamTS-A anchors cells in place and preserves CNS architecture by reducing tissue stiffness.


Assuntos
Linhagem da Célula , Sistema Nervoso Central/citologia , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Alelos , Animais , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cadeias alfa de Integrinas/metabolismo , Mutação/genética , Neuroglia/citologia , Neuroglia/metabolismo , Fenótipo , Frações Subcelulares/metabolismo , Análise de Sobrevida
2.
Development ; 141(5): 1011-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24550109

RESUMO

Most neurons of the adult Drosophila ventral nerve cord arise from a burst of neurogenesis during the third larval instar stage. Most of this growth occurs in thoracic neuromeres, which contain 25 individually identifiable postembryonic neuronal lineages. Initially, each lineage consists of two hemilineages--'A' (Notch(On)) and 'B' (Notch(Off))--that exhibit distinct axonal trajectories or fates. No reliable method presently exists to identify these lineages or hemilineages unambiguously other than labor-intensive lineage-tracing methods. By combining mosaic analysis with a repressible cell marker (MARCM) analysis with gene expression studies, we constructed a gene expression map that enables the rapid, unambiguous identification of 23 of the 25 postembryonic lineages based on the expression of 15 transcription factors. Pilot genetic studies reveal that these transcription factors regulate the specification and differentiation of postembryonic neurons: for example, Nkx6 is necessary and sufficient to direct axonal pathway selection in lineage 3. The gene expression map thus provides a descriptive foundation for the genetic and molecular dissection of adult-specific neurogenesis and identifies many transcription factors that are likely to regulate the development and differentiation of discrete subsets of postembryonic neurons.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sistema Nervoso Central/citologia , Drosophila , Proteínas de Drosophila/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição/genética
3.
Dev Biol ; 388(1): 117-33, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24512689

RESUMO

Hb9 is a homeodomain-containing transcription factor that acts in combination with Nkx6, Lim3, and Tail-up (Islet) to guide the stereotyped differentiation, connectivity, and function of a subset of neurons in Drosophila. The role of Hb9 in directing neuronal differentiation is well documented, but the lineage of Hb9(+) neurons is only partly characterized, its regulation is poorly understood, and most of the downstream genes through which it acts remain at large. Here, we complete the lineage tracing of all embryonic Hb9(+) neurons (to eight neuronal lineages) and provide evidence that hb9, lim3, and tail-up are coordinately regulated by a common set of upstream factors. Through the parallel use of micro-array gene expression profiling and the Dam-ID method, we searched for Hb9-regulated genes, uncovering transcription factors as the most over-represented class of genes regulated by Hb9 (and Nkx6) in the CNS. By a nearly ten-to-one ratio, Hb9 represses rather than activates transcription factors, highlighting transcriptional repression of other transcription factors as a core mechanism by which Hb9 governs neuronal determination. From the small set of genes activated by Hb9, we characterized the expression and function of two - fd59a/foxd, which encodes a transcription factor, and Nitric oxide synthase. Under standard lab conditions, both genes are dispensable for Drosophila development, but Nos appears to inhibit hyper-active behavior and fd59a appears to act in octopaminergic neurons to control egg-laying behavior. Together our data clarify the mechanisms through which Hb9 governs neuronal specification and differentiation and provide an initial characterization of the expression and function of Nos and fd59a in the Drosophila CNS.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Linhagem da Célula , Sistema Nervoso Central/embriologia , Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead/metabolismo , Estudos de Associação Genética , Genótipo , Hibridização In Situ , Dados de Sequência Molecular , Mutagênese , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Transcriptoma
4.
J Neurosci ; 33(45): 17863-73, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24198375

RESUMO

The MAPKKK dual leucine zipper-containing kinase (DLK, Wallenda in Drosophila) is an evolutionarily conserved component of the axonal injury response pathway. After nerve injury, DLK promotes degeneration of distal axons and regeneration of proximal axons. This dual role in coordinating degeneration and regeneration suggests that DLK may be a sensor of axon injury, and so understanding how DLK is activated is important. Two mechanisms are known to activate DLK. First, increasing the levels of DLK via overexpression or loss of the PHR ubiquitin ligases that target DLK activate DLK signaling. Second, in Caenorhabditis elegans, a calcium-dependent mechanism, can activate DLK. Here we describe a new mechanism that activates DLK in Drosophila: loss of the spectraplakin short stop (shot). In a genetic screen for mutants with defective neuromuscular junction development, we identify a hypomorphic allele of shot that displays synaptic terminal overgrowth and a precocious regenerative response to nerve injury. We demonstrate that both phenotypes are the result of overactivation of the DLK signaling pathway. We further show that, unlike mutations in the PHR ligase Highwire, loss of function of shot activates DLK without a concomitant increase in the levels of DLK. As a spectraplakin, Shot binds to both actin and microtubules and promotes cytoskeletal stability. The DLK pathway is also activated by downregulation of the TCP1 chaperonin complex, whose normal function is to promote cytoskeletal stability. These findings support the model that DLK is activated by cytoskeletal instability, which is a shared feature of both spectraplakin mutants and injured axons.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , MAP Quinase Quinase Quinases/genética , Proteínas dos Microfilamentos/genética , Mutação , Proteínas do Tecido Nervoso/genética , Alelos , Animais , Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulação para Baixo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fenótipo
5.
Dev Dyn ; 242(7): 874-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23389965

RESUMO

BACKGROUND: The scalloped (sd) and vestigial (vg) genes function together in Drosophila wing development. Little is known about sd protein (SD) expression during development, or whether sd and vg interact in other developing tissues. To begin to address these questions, we generated an anti-SD antibody. RESULTS: During embryogenesis, SD is expressed in both central and peripheral nervous systems, and the musculature. SD is also expressed in developing flight appendages. Despite SD expression herein, the peripheral nervous system, musculature, and dorsal limb primordia appeared generally normal in the absence of sd function. SD is also expressed in subsets of ventral nerve cord cells, including neuroblast 1-2 descendants and ventral unpaired median motor neurons (mVUMs). While sd function is not required to specify these neurons, it is necessary for the correct innervation of somatic muscles by the mVUMs. We also show that SD and vg protein (VG) are co-expressed in overlapping and distinctive subsets of cells in embryonic and larval tissues. CONCLUSIONS: We describe the full breadth of SD expression during Drosophila embryogenesis, and identify a requirement for sd function in a subset of motor neurons. This work provides the necessary foundation for functional studies regarding the roles of sd during Drosophila development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/embriologia , Discos Imaginais/metabolismo , Músculos/embriologia , Músculos/metabolismo , Sistema Nervoso Periférico/embriologia , Sistema Nervoso Periférico/metabolismo , Fatores de Transcrição/genética
6.
G3 (Bethesda) ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996053

RESUMO

Despite increasing in mass approximately 100-fold during larval life, the Drosophila CNS maintains its characteristic form. Dynamic interactions between the overlying basement membrane and underlying surface glia are known to regulate CNS structure in Drosophila, but the genes and pathways that establish and maintain CNS morphology during development remain poorly characterized. To identify genes that regulate CNS shape in Drosophila, we conducted an EMS-based, forward genetic screen of the second chromosome, uncovered 50 mutations that disrupt CNS structure, and mapped these alleles to 17 genes. Analysis of whole genome sequencing data wedded to genetic studies uncovered the affected gene for all but one mutation. Identified genes include well characterized regulators of tissue shape, like LanB1, viking, and Collagen type IV alpha1, and previously characterized genes, such as Toll-2 and Rme-8, with no known role in regulating CNS structure. We also uncovered that papilin and C1GalTA likely act in the same pathway to regulate CNS structure and found that the fly homolog of a glucuronosyltransferase, B4GAT1/LARGE1, that regulates Dystroglycan function in mammals is required to maintain CNS shape in Drosophila. Finally, we show that the senseless-2 transcription factor is expressed and functions specifically in surface glia found on peripheral nerves but not in the CNS to govern CNS structure, identifying a gene that functionally subdivides a glial subtype along the peripheral-central axis. Future work on these genes should clarify the genetic mechanisms that ensure the homeostasis of CNS form during development.

7.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38260379

RESUMO

Dihydroceramide desaturases convert dihydroceramides to ceramides, the precursors of all complex sphingolipids. Reduction of DEGS1 dihydroceramide desaturase function causes pediatric neurodegenerative disorder hypomyelinating leukodystrophy-18 (HLD-18). We discovered that infertile crescent (ifc), the Drosophila DEGS1 homolog, is expressed primarily in glial cells to promote CNS development by guarding against neurodegeneration. Loss of ifc causes massive dihydroceramide accumulation and severe morphological defects in cortex glia, including endoplasmic reticulum (ER) expansion, failure of neuronal ensheathment, and lipid droplet depletion. RNAi knockdown of the upstream ceramide synthase schlank in glia of ifc mutants rescues ER expansion, suggesting dihydroceramide accumulation in the ER drives this phenotype. RNAi knockdown of ifc in glia but not neurons drives neuronal cell death, suggesting that ifc function in glia promotes neuronal survival. Our work identifies glia as the primary site of disease progression in HLD-18 and may inform on juvenile forms of ALS, which also feature elevated dihydroceramide levels.

8.
Development ; 136(19): 3257-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19710170

RESUMO

Individual neurons adopt and maintain defined morphological and physiological phenotypes as a result of the expression of specific combinations of transcription factors. In particular, homeodomain-containing transcription factors play key roles in determining neuronal subtype identity in flies and vertebrates. dbx belongs to the highly divergent H2.0 family of homeobox genes. In vertebrates, Dbx1 and Dbx2 promote the development of a subset of interneurons, some of which help mediate left-right coordination of locomotor activity. Here, we identify and show that the single Drosophila ortholog of Dbx1/2 contributes to the development of specific subsets of interneurons via cross-repressive, lineage-specific interactions with the motoneuron-promoting factors eve and hb9 (exex). dbx is expressed primarily in interneurons of the embryonic, larval and adult central nervous system, and these interneurons tend to extend short axons and be GABAergic. Interestingly, many Dbx(+) interneurons share a sibling relationship with Eve(+) or Hb9(+) motoneurons. The non-overlapping expression of dbx and eve, or dbx and hb9, within pairs of sibling neurons is initially established as a result of Notch/Numb-mediated asymmetric divisions. Cross-repressive interactions between dbx and eve, and dbx and hb9, then help maintain the distinct expression profiles of these genes in their respective pairs of sibling neurons. Strict maintenance of the mutually exclusive expression of dbx relative to that of eve and hb9 in sibling neurons is crucial for proper neuronal specification, as misexpression of dbx in motoneurons dramatically hinders motor axon outgrowth.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Comportamento Animal , Diferenciação Celular , DNA/genética , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Genes de Insetos , Proteínas de Homeodomínio/genética , Interneurônios/citologia , Locomoção , Dados de Sequência Molecular , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Ácido gama-Aminobutírico/metabolismo
9.
Development ; 136(24): 4089-98, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19906847

RESUMO

Asymmetric cell divisions generate sibling cells of distinct fates ('A', 'B') and constitute a fundamental mechanism that creates cell-type diversity in multicellular organisms. Antagonistic interactions between the Notch pathway and the intrinsic cell-fate determinant Numb appear to regulate asymmetric divisions in flies and vertebrates. During these divisions, productive Notch signaling requires sanpodo, which encodes a novel transmembrane protein. Here, we demonstrate that Drosophila sanpodo plays a dual role to regulate Notch signaling during asymmetric divisions - amplifying Notch signaling in the absence of Numb in the 'A' daughter cell and inhibiting Notch signaling in the presence of Numb in the 'B' daughter cell. In so doing, sanpodo ensures the asymmetry in Notch signaling levels necessary for the acquisition of distinct fates by the two daughter cells. These findings answer long-standing questions about the restricted ability of Numb and Sanpodo to inhibit and to promote, respectively, Notch signaling during asymmetric divisions.


Assuntos
Linhagem da Célula/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila , Receptores Notch/fisiologia , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Drosophila/embriologia , Drosophila/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Juvenis/fisiologia , Proteínas dos Microfilamentos/fisiologia , Transdução de Sinais
10.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33993253

RESUMO

The mechanisms that determine the final topology of skeletal muscles remain largely unknown. We have been developing Drosophila body wall musculature as a model to identify and characterize the pathways that control muscle size, shape, and orientation during embryogenesis. Our working model argues muscle morphogenesis is regulated by (1) extracellular guidance cues that direct muscle cells toward muscle attachment sites, and (2) contact-dependent interactions between muscles and tendon cells. While we have identified several pathways that regulate muscle morphogenesis, our understanding is far from complete. Here, we report the results of a recent EMS-based forward genetic screen that identified a myriad of loci not previously associated with muscle morphogenesis. We recovered new alleles of known muscle morphogenesis genes, including back seat driver, kon-tiki, thisbe, and tumbleweed, arguing our screen had the depth and precision to uncover myogenic genes. We also identified new alleles of spalt-major, barren, and patched that presumably disrupt independent muscle morphogenesis pathways. Equally as important, our screen shows that at least 11 morphogenetic loci remain to be mapped and characterized. Our screen has developed exciting new tools to study muscle morphogenesis, which may provide future insights into the mechanisms that regulate skeletal muscle topology.


Assuntos
Proteínas de Drosophila , Drosophila , Desenvolvimento Muscular , Animais , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Morfogênese/genética , Desenvolvimento Muscular/genética
11.
Pigment Cell Melanoma Res ; 33(3): 416-425, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31642595

RESUMO

Tissue regeneration and homeostasis often require recruitment of undifferentiated precursors (adult stem cells; ASCs). While many ASCs continuously proliferate throughout the lifetime of an organism, others are recruited from a quiescent state to replenish their target tissue. A long-standing question in stem cell biology concerns how long-lived, non-dividing ASCs regulate the transition between quiescence and proliferation. We study the melanocyte stem cell (MSC) to investigate the molecular pathways that regulate ASC quiescence. Our prior work indicated that GABA-A receptor activation promotes MSC quiescence in larval zebrafish. Here, through pharmacological and genetic approaches we show that GABA-A acts through calcium signaling to maintain MSC quiescence. Unexpectedly, we identified translocator protein (TSPO), a mitochondrial membrane-associated protein that regulates mitochondrial function and metabolic homeostasis, as a parallel regulator of MSC quiescence. We found that both TSPO-specific ligands and induction of gluconeogenesis likely act in the same pathway to promote MSC activation and melanocyte production in larval zebrafish. In contrast, TSPO and gluconeogenesis appear to act in parallel to GABA-A receptor signaling to regulate MSC quiescence and vertebrate pigment patterning.


Assuntos
Ciclo Celular , Melanócitos/citologia , Mitocôndrias/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/farmacologia , Gluconeogênese/efeitos dos fármacos , Larva/efeitos dos fármacos , Ligantes , Melanócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
12.
Elife ; 92020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32216875

RESUMO

The Drosophila ventral nerve cord (VNC) is composed of thousands of neurons born from a set of individually identifiable stem cells. The VNC harbors neuronal circuits required to execute key behaviors, such as flying and walking. Leveraging the lineage-based functional organization of the VNC, we investigated the developmental and molecular basis of behavior by focusing on lineage-specific functions of the homeodomain transcription factor, Unc-4. We found that Unc-4 functions in lineage 11A to promote cholinergic neurotransmitter identity and suppress the GABA fate. In lineage 7B, Unc-4 promotes proper neuronal projections to the leg neuropil and a specific flight-related take-off behavior. We also uncovered that Unc-4 acts peripherally to promote proprioceptive sensory organ development and the execution of specific leg-related behaviors. Through time-dependent conditional knock-out of Unc-4, we found that its function is required during development, but not in the adult, to regulate the above events.


Assuntos
Encéfalo/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Proteínas de Homeodomínio/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal , Linhagem da Célula , Proteínas de Drosophila/genética , Voo Animal , Proteínas de Homeodomínio/genética , Neurotransmissores/análise
13.
Dev Cell ; 5(2): 231-43, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12919675

RESUMO

Cellular diversity is a fundamental characteristic of complex organisms, and the Drosophila CNS has proved an informative paradigm for understanding the mechanisms that create cellular diversity. One such mechanism is the asymmetric localization of Numb to ensure that sibling cells respond differently to the extrinsic Notch signal and, thus, adopt distinct fates (A and B). Here we focus on the only genes known to function specifically to regulate Notch-dependent asymmetric divisions: sanpodo and numb. We demonstrate that sanpodo, which specifies the Notch-dependent fate (A), encodes a four-pass transmembrane protein that localizes to the cell membrane in the A cell and physically interacts with the Notch receptor. We also show that Numb, which inhibits Notch signaling to specify the default fate (B), physically associates with Sanpodo and inhibits Sanpodo membrane localization in the B cell. Our findings suggest a model in which Numb inhibits Notch signaling through the regulation of Sanpodo membrane localization.


Assuntos
Proteínas de Transporte/metabolismo , Divisão Celular/fisiologia , Membrana Celular/metabolismo , Drosophila melanogaster/fisiologia , Hormônios Juvenis/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Peptídeos e Proteínas de Sinalização Intracelular , Hormônios Juvenis/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Receptores Notch , Alinhamento de Sequência , Transdução de Sinais/fisiologia
14.
Genetics ; 213(2): 555-566, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31444245

RESUMO

In larval zebrafish, melanocyte stem cells (MSCs) are quiescent, but can be recruited to regenerate the larval pigment pattern following melanocyte ablation. Through pharmacological experiments, we found that inhibition of γ-aminobutyric acid (GABA)-A receptor function, specifically the GABA-A ρ subtype, induces excessive melanocyte production in larval zebrafish. Conversely, pharmacological activation of GABA-A inhibited melanocyte regeneration. We used clustered regularly interspaced short palindromic repeats/Cas9 to generate two mutant alleles of gabrr1, a subtype of GABA-A receptors. Both alleles exhibited robust melanocyte overproduction, while conditional overexpression of gabrr1 inhibited larval melanocyte regeneration. Our data suggest that gabrr1 signaling is necessary to maintain MSC quiescence and sufficient to reduce, but not eliminate, melanocyte regeneration in larval zebrafish.


Assuntos
Melanócitos/metabolismo , Receptores de GABA-A/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Diferenciação Celular/genética , Divisão Celular/genética , Larva/genética , Larva/crescimento & desenvolvimento , Pigmentação/genética , Regeneração/genética , Transdução de Sinais/genética , Células-Tronco/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Ácido gama-Aminobutírico/genética
15.
Neuron ; 35(1): 39-50, 2002 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12123607

RESUMO

Here we present the identification and characterization of dHb9, the Drosophila homolog of vertebrate Hb9, which encodes a factor central to motorneuron (MN) development. We show that dHb9 regulates neuronal fate by restricting expression of Lim3 and Even-skipped (Eve), two homeodomain (HD) proteins required for development of distinct neuronal classes. Also, dHb9 and Lim3 are activated independently of each other in a virtually identical population of ventrally and laterally projecting MNs. Surprisingly, dHb9 represses Lim3 cell nonautonomously in a subset of dorsally projecting MNs, revealing a novel role for intercellular signaling in the establishment of neuronal fate in Drosophila. Lastly, we provide evidence that dHb9 and Eve regulate each other's expression through Groucho-dependent crossrepression. This mutually antagonistic relationship bears similarity to the crossrepressive relationships between pairs of HD proteins that pattern the vertebrate neural tube.


Assuntos
Proteínas de Bactérias , Linhagem da Célula/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/metabolismo , Sistema Nervoso/embriologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Comunicação Celular/genética , Diferenciação Celular/genética , Quimiotaxia/genética , Coristoma/genética , Coristoma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Feminino , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Proteínas de Homeodomínio/genética , Masculino , Dados de Sequência Molecular , Neurônios Motores/citologia , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética
16.
Int J Dev Biol ; 51(2): 107-15, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17294361

RESUMO

The Drosophila embryonic Central Nervous System (CNS) develops from the ventrolateral region of the embryo, the neuroectoderm. Neuroblasts arise from the neuroectoderm and acquire unique fates based on the positions in which they are formed. Previous work has identified six genes that pattern the dorsoventral axis of the neuroectoderm: Drosophila epidermal growth factor receptor (Egfr), ventral nerve cord defective (vnd), intermediate neuroblast defective (ind), muscle segment homeobox (msh), Dichaete and Sox-Neuro (SoxN). The activities of these genes partition the early neuroectoderm into three parallel longitudinal columns (medial, intermediate, lateral) from which three distinct columns of neural stem cells arise. Most of our knowledge of the regulatory relationships among these genes derives from classical loss of function analyses. To gain a more in depth understanding of Egfr-mediated regulation of vnd, ind and msh and investigate potential cross-regulatory interactions among these genes, we combined loss of function with ectopic activation of Egfr activity. We observe that ubiquitous activation of Egfr expands the expression of vnd and ind into the lateral column and reduces that of msh in the lateral column. Through this work, we identified the genetic criteria required for the development of the medial and intermediate column cell fates. We also show that ind appears to repress vnd, adding an additional layer of complexity to the genetic regulatory hierarchy that patterns the dorsoventral axis of the CNS. Finally, we demonstrate that Egfr and the genes of the achaete-scute complex act in parallel to regulate the individual fate of neural stem cells.


Assuntos
Padronização Corporal/genética , Drosophila/embriologia , Drosophila/genética , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Diferenciação Celular , Drosophila/crescimento & desenvolvimento , Ectoderma/fisiologia , Embrião não Mamífero , Receptores ErbB/genética , Receptores ErbB/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Sistema Nervoso/embriologia
18.
Nat Commun ; 8: 14112, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106166

RESUMO

Hypomorphic mutations are a valuable tool for both genetic analysis of gene function and for synthetic biology applications. However, current methods to generate hypomorphic mutations are limited to a specific organism, change gene expression unpredictably, or depend on changes in spatial-temporal expression of the targeted gene. Here we present a simple and predictable method to generate hypomorphic mutations in model organisms by targeting translation elongation. Adding consecutive adenosine nucleotides, so-called polyA tracks, to the gene coding sequence of interest will decrease translation elongation efficiency, and in all tested cell cultures and model organisms, this decreases mRNA stability and protein expression. We show that protein expression is adjustable independent of promoter strength and can be further modulated by changing sequence features of the polyA tracks. These characteristics make this method highly predictable and tractable for generation of programmable allelic series with a range of expression levels.


Assuntos
Técnicas Genéticas , Mutação , Proteínas/genética , Poli A/genética , Poli A/metabolismo , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Proteínas/metabolismo , Estabilidade de RNA
19.
Curr Opin Neurobiol ; 13(1): 8-15, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12593977

RESUMO

The Drosophila ventral nerve cord has been a central model system for studying the molecular genetic mechanisms that control CNS development. Studies show that the generation of neural diversity is a multistep process initiated by the patterning and segmentation of the neuroectoderm. These events act together with the process of lateral inhibition to generate precursor cells (neuroblasts) with specific identities, distinguished by the expression of unique combinations of regulatory genes. The expression of these genes in a given neuroblast restricts the fate of its progeny, by activating specific combinations of downstream genes. These genes in turn specify the identity of any given postmitotic cell, which is evident by its cellular morphology and choice of neurotransmitter.


Assuntos
Padronização Corporal/genética , Diferenciação Celular/genética , Sistema Nervoso Central/embriologia , Drosophila melanogaster/embriologia , Gânglios dos Invertebrados/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Animais , Linhagem da Célula/genética , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Modelos Animais , Neurônios/citologia , Neurônios/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia
20.
Exp Hematol ; 44(3): 161-5.e4, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26607597

RESUMO

The retinoblastoma gene (RB1) has been implicated as a tumor suppressor in multiple myeloma (MM), yet its role remains unclear because in the majority of cases with 13q14 deletions, un-mutated RB1 remains expressed from the retained allele. To explore the role of Rb1 in MM, we examined the functional consequences of single- and double-copy Rb1 loss in germinal center B cells, the cells of origin of MM. We generated mice without Rb1 function in germinal center B cells by crossing Rb1(Flox/Flox) with C-γ-1-Cre (Cγ1) mice expressing the Cre recombinase in class-switched B cells in a p107(-/-) background to prevent p107 from compensating for Rb1 loss (Cγ1-Rb1(F/F)-p107(-/-)). All mice developed normally, but B cells with two copies of Rb1 deleted (Cγ1-Rb1(F/F)-p107(-/-)) exhibited increased proliferation and cell death compared with Cγ1-Rb1(+/+)-p107(-/-) controls ex vivo. In vivo, Cγ1-Rb1(F/F)-p107(-/-) mice had a lower percentage of splenic B220+ cells and reduced numbers of bone marrow antigen-specific secreting cells compared with control mice. Our data indicate that Rb1 loss induces both cell proliferation and death in germinal center B cells. Because no B-cell malignancies developed after 1 year of observation, our data also suggest that Rb1 loss is not sufficient to transform post-germinal center B cells and that additional, specific mutations are likely required to cooperate with Rb1 loss to induce malignant transformation.


Assuntos
Linfócitos B/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Centro Germinativo/metabolismo , Mutação , Proteína do Retinoblastoma/deficiência , Animais , Linfócitos B/patologia , Morte Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Centro Germinativo/patologia , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA