Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NMR Biomed ; : e5033, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712335

RESUMO

Recent studies have shown significant changes to brain microstructure during sleep and anesthesia. In vivo optical microscopy and magnetic resonance imaging (MRI) studies have attributed these changes to anesthesia and sleep-related modulation of the brain's extracellular space (ECS). Isoflurane anesthesia is widely used in preclinical diffusion MRI (dMRI) and it is therefore important to investigate if the brain's microstructure is affected by anesthesia to an extent detectable with dMRI. Here, we employ diffusion kurtosis imaging (DKI) to assess brain microstructure in the awake and anesthetized mouse brain (n = 22). We find both mean diffusivity (MD) and mean kurtosis (MK) to be significantly decreased in the anesthetized mouse brain compared with the awake state (p < 0.001 for both). This effect is observed in both gray matter and white matter. To further investigate the time course of these changes we introduce a method for time-resolved fast DKI. With this, we show the time course of the microstructural alterations in mice (n = 5) as they transition between states in an awake-anesthesia-awake paradigm. We find that the decrease in MD and MK occurs rapidly after delivery of gas isoflurane anesthesia and that values normalize only slowly when the animals return to the awake state. Finally, time-resolved fast DKI is employed in an experimental mouse model of brain edema (n = 4), where cell swelling causes the ECS volume to decrease. Our results show that isoflurane affects DKI parameters and metrics of brain microstructure and point to isoflurane causing a reduction in the ECS volume. The demonstrated DKI methods are suitable for in-bore perturbation studies, for example, for investigating microstructural modulations related to sleep/wake-dependent functions of the glymphatic system. Importantly, our study shows an effect of isoflurane anesthesia on rodent brain microstructure that has broad relevance to preclinical dMRI.

2.
Front Cell Neurosci ; 17: 1138624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180952

RESUMO

The Locus Coeruleus (LC) is in the brainstem and supplies key brain structures with noradrenaline, including the forebrain and hippocampus. The LC impacts specific behaviors such as anxiety, fear, and motivation, as well as physiological phenomena that impact brain functions in general, including sleep, blood flow regulation, and capillary permeability. Nevertheless, the short- and long-term consequences of LC dysfunction remain unclear. The LC is among the brain structures first affected in patients suffering from neurodegenerative diseases such as Parkinson's disease and Alzheimer's Disease, hinting that LC dysfunction may play a central role in disease development and progression. Animal models with modified or disrupted LC function are essential to further our understanding of LC function in the normal brain, the consequences of LC dysfunction, and its putative roles in disease development. For this, well-characterized animal models of LC dysfunction are needed. Here, we establish the optimal dose of selective neurotoxin N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (DSP-4) for LC ablation. Using histology and stereology, we compare LC volume and neuron number in LC ablated (LCA) mice and controls to assess the efficacy of LC ablation with different numbers of DSP-4 injections. All LCA groups show a consistent decrease in LC cell count and LC volume. We then proceed to characterize the behavior of LCA mice using a light-dark box test, Barnes maze test, and non-invasive sleep-wakefulness monitoring. Behaviorally, LCA mice differ subtly from control mice, with LCA mice generally being more curious and less anxious compared to controls consistent with known LC function and projections. We note an interesting contrast in that control mice have varying LC size and neuron count but consistent behavior whereas LCA mice (as expected) have consistently sized LC but erratic behavior. Our study provides a thorough characterization of an LC ablation model, firmly consolidating it as a valid model system for the study of LC dysfunction.

3.
Front Neurosci ; 16: 968839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213739

RESUMO

Efficient interhemispheric integration of neural activity between left and right primary motor cortex (M1) is critical for inter-limb motor control. We employed optogenetic stimulation to establish a framework for probing transcallosal M1-M1 interactions in rats. We performed optogenetic stimulation of excitatory neurons in right M1 of male Sprague-Dawley rats. We recorded the transcallosal evoked potential in contralateral left M1 via chronically implanted electrodes. Recordings were performed under anesthesia combination of dexmedetomidine and a low concentration of isoflurane. We systematically varied the stimulation intensity and duration to characterize the relationship between stimulation parameters in right M1 and the characteristics of the evoked intracortical potentials in left M1. Optogenetic stimulation of right M1 consistently evoked a transcallosal response in left M1 with a consistent negative peak (N1) that sometimes was preceded by a smaller positive peak (P1). Higher stimulation intensity or longer stimulation duration gradually increased N1 amplitude and reduced N1 variability across trials. A combination of stimulation intensities of 5-10 mW with stimulus durations of 1-10 ms were generally sufficient to elicit a robust transcallosal response in most animal, with our optic fiber setup. Optogenetically stimulated excitatory neurons in M1 can reliably evoke a transcallosal response in anesthetized rats. Characterizing the relationship between "stimulation dose" and "response magnitude" (i.e., the gain function) of transcallosal M1-to-M1 excitatory connections can be used to optimize the variables of optogenetic stimulation and ensure stimulation efficacy.

4.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958374

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease that is typically diagnosed late in its progression. There is a need for biomarkers suitable for monitoring the disease progression at earlier stages to guide the development of novel neuroprotective therapies. One potential biomarker, α-synuclein, has been found in both the familial cases of PD, as well as the sporadic cases and is considered a key feature of PD. α-synuclein is naturally present in the retina, and it has been suggested that early symptoms of the visual system may be used as a biomarker for PD. Here, we use a viral vector to induce a unilateral expression of human wild-type α-synuclein in rats as a mechanistic model of protein aggregation in PD. We employed functional magnetic resonance imaging (fMRI) to investigate whether adeno-associated virus (AAV) mediated expression of human wild-type α-synuclein alter functional activity in the visual system. A total of 16 rats were injected with either AAV-α-synuclein (n = 7) or AAV-null (n = 9) in the substantia nigra pars compacta (SNc) of the left hemisphere. The expression of α-synuclein was validated by a motor assay and postmortem immunohistochemistry. Five months after the introduction of the AAV-vector, fMRI showed robust blood oxygen level-dependent (BOLD) responses to light stimulation in the visual systems of both control and AAV-α-synuclein animals. However, our results demonstrate that the expression of AAV-α-synuclein does not affect functional activation of the visual system. This negative finding suggests that fMRI-based read-outs of visual responses may not be a sensitive biomarker for PD.


Assuntos
Doenças Neurodegenerativas , alfa-Sinucleína , Animais , Dependovirus/genética , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Ratos , Roedores , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA