Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(9): e22482, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947136

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, and the most common primary liver malignancy to present in the clinic. With the exception of liver transplant, treatment options for advanced HCC are limited, but improved tumor stratification could open the door to new treatment options. Previously, we demonstrated that the circadian regulator Aryl Hydrocarbon-Like Receptor Like 1 (ARNTL, or Bmal1) and the liver-enriched nuclear factor 4 alpha (HNF4α) are robustly co-expressed in healthy liver but incompatible in the context of HCC. Faulty circadian expression of HNF4α- either by isoform switching, or loss of expression- results in an increased risk for HCC, while BMAL1 gain-of-function in HNF4α-positive HCC results in apoptosis and tumor regression. We hypothesize that the transcriptional programs of HNF4α and BMAL1 are antagonistic in liver disease and HCC. Here, we study this antagonism by generating a mouse model with inducible loss of hepatic HNF4α and BMAL1 expression. The results reveal that simultaneous loss of HNF4α and BMAL1 is protective against fatty liver and HCC in carcinogen-induced liver injury and in the "STAM" model of liver disease. Furthermore, our results suggest that targeting Bmal1 expression in the absence of HNF4α inhibits HCC growth and progression. Specifically, pharmacological suppression of Bmal1 in HNF4α-deficient, BMAL1-positive HCC with REV-ERB agonist SR9009 impairs tumor cell proliferation and migration in a REV-ERB-dependent manner, while having no effect on healthy hepatocytes. Collectively, our results suggest that stratification of HCC based on HNF4α and BMAL1 expression may provide a new perspective on HCC properties and potential targeted therapeutics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/patologia , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos
2.
Proc Natl Acad Sci U S A ; 109(7): 2302-7, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308320

RESUMO

Src tyrosine kinase has long been implicated in colon cancer but much remains to be learned about its substrates. The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) has just recently been implicated in colon cancer but its role is poorly defined. Here we show that c-Src phosphorylates human HNF4α on three tyrosines in an interdependent and isoform-specific fashion. The initial phosphorylation site is a Tyr residue (Y14) present in the N-terminal A/B domain of P1- but not P2-driven HNF4α. Phospho-Y14 interacts with the Src SH2 domain, leading to the phosphorylation of two additional tyrosines in the ligand binding domain (LBD) in P1-HNF4α. Phosphomimetic mutants in the LBD decrease P1-HNF4α protein stability, nuclear localization and transactivation function. Immunohistochemical analysis of approximately 450 human colon cancer specimens (Stage III) reveals that P1-HNF4α is either lost or localized in the cytoplasm in approximately 80% of tumors, and that staining for active Src correlates with those events in a subset of samples. Finally, three SNPs in the human HNF4α protein, two of which are in the HNF4α F domain that interacts with the Src SH3 domain, increase phosphorylation by Src and decrease HNF4α protein stability and function, suggesting that individuals with those variants may be more susceptible to Src-mediated effects. This newly identified interaction between Src kinase and HNF4α has important implications for colon and other cancers.


Assuntos
Núcleo Celular/metabolismo , Neoplasias do Colo/enzimologia , Fator 4 Nuclear de Hepatócito/metabolismo , Isoformas de Proteínas/metabolismo , Quinases da Família src/metabolismo , Linhagem Celular , Neoplasias do Colo/patologia , Fator 4 Nuclear de Hepatócito/genética , Humanos , Mimetismo Molecular , Fosforilação , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética
3.
Nucleic Acids Res ; 40(12): 5343-56, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22383578

RESUMO

Nuclear receptors (NRs) regulate gene expression by binding specific DNA sequences consisting of AG[G/T]TCA or AGAACA half site motifs in a variety of configurations. However, those motifs/configurations alone do not adequately explain the diversity of NR function in vivo. Here, a systematic examination of DNA binding specificity by protein-binding microarrays (PBMs) of three closely related human NRs--HNF4α, retinoid X receptor alpha (RXRα) and COUPTF2--reveals an HNF4-specific binding motif (H4-SBM), xxxxCAAAGTCCA, as well as a previously unrecognized polarity in the classical DR1 motif (AGGTCAxAGGTCA) for HNF4α, RXRα and COUPTF2 homodimers. ChIP-seq data indicate that the H4-SBM is uniquely bound by HNF4α but not 10 other NRs in vivo, while NRs PXR, FXRα, Rev-Erbα appear to bind adjacent to H4-SBMs. HNF4-specific DNA recognition and transactivation are mediated by residues Asp69 and Arg76 in the DNA-binding domain; this combination of amino acids is unique to HNF4 among all human NRs. Expression profiling and ChIP data predict ≈ 100 new human HNF4α target genes with an H4-SBM site, including several Co-enzyme A-related genes and genes with links to disease. These results provide important new insights into NR DNA binding.


Assuntos
Fator 4 Nuclear de Hepatócito/metabolismo , Elementos Reguladores de Transcrição , Arginina/química , Ácido Aspártico/química , Sítios de Ligação , Fator II de Transcrição COUP/metabolismo , Fator 4 Nuclear de Hepatócito/química , Humanos , Motivos de Nucleotídeos , Análise Serial de Proteínas , Ligação Proteica , Receptor X Retinoide alfa/metabolismo , Ativação Transcricional
4.
Front Endocrinol (Lausanne) ; 14: 1232569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635981

RESUMO

Hepatocyte nuclear factor 4-alpha (HNF4α) drives a complex array of transcriptional programs across multiple organs. Beyond its previously documented function in the liver, HNF4α has crucial roles in the kidney, intestine, and pancreas. In the intestine, a multitude of functions have been attributed to HNF4 and its accessory transcription factors, including but not limited to, intestinal maturation, differentiation, regeneration, and stem cell renewal. Functional redundancy between HNF4α and its intestine-restricted paralog HNF4γ, and co-regulation with other transcription factors drive these functions. Dysregulated expression of HNF4 results in a wide range of disease manifestations, including the development of a chronic inflammatory state in the intestine. In this review, we focus on the multiple molecular mechanisms of HNF4 in the intestine and explore translational opportunities. We aim to introduce new perspectives in understanding intestinal genetics and the complexity of gastrointestinal disorders through the lens of HNF4 transcription factors.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Humanos , Diferenciação Celular , Inflamação , Intestinos
5.
Front Endocrinol (Lausanne) ; 14: 1226173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600688

RESUMO

In the more than 30 years since the purification and cloning of Hepatocyte Nuclear Factor 4 (HNF4α), considerable insight into its role in liver function has been gleaned from its target genes and mouse experiments. HNF4α plays a key role in lipid and glucose metabolism and intersects with not just diabetes and circadian rhythms but also with liver cancer, although much remains to be elucidated about those interactions. Similarly, while we are beginning to elucidate the role of the isoforms expressed from its two promoters, we know little about the alternatively spliced variants in other portions of the protein and their impact on the 1000-plus HNF4α target genes. This review will address how HNF4α came to be called the master regulator of liver-specific gene expression with a focus on its role in basic metabolism, the contributions of the various isoforms and the intriguing intersection with the circadian clock.


Assuntos
Relógios Circadianos , Fator 4 Nuclear de Hepatócito , Fígado , Animais , Humanos , Camundongos , Metabolismo Basal , Fígado/fisiologia , Isoformas de Proteínas/genética , Fator 4 Nuclear de Hepatócito/genética
6.
Res Sq ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886485

RESUMO

High fat diets (HFDs) have been linked to several diseases including obesity, diabetes, fatty liver, inflammatory bowel disease (IBD) and colon cancer. In this study, we examined the impact on intestinal gene expression of three isocaloric HFDs that differed only in their fatty acid composition - coconut oil (saturated fats), conventional soybean oil (polyunsaturated fats) and a genetically modified soybean oil (monounsaturated fats). Four functionally distinct segments of the mouse intestinal tract were analyzed using RNA-seq - duodenum, jejunum, terminal ileum and proximal colon. We found considerable dysregulation of genes in multiple tissues with the different diets, including those encoding nuclear receptors and genes involved in xenobiotic and drug metabolism, epithelial barrier function, IBD and colon cancer as well as genes associated with the microbiome and COVID-19. Network analysis shows that genes involved in metabolism tend to be upregulated by the HFDs while genes related to the immune system are downregulated; neurotransmitter signaling was also dysregulated by the HFDs. Genomic sequencing also revealed a microbiome altered by the HFDs. This study highlights the potential impact of different HFDs on gut health with implications for the organism as a whole and will serve as a reference for gene expression along the length of the intestines.

7.
Sci Rep ; 13(1): 22758, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151490

RESUMO

High fat diets (HFDs) have been linked to several diseases including obesity, diabetes, fatty liver, inflammatory bowel disease (IBD) and colon cancer. In this study, we examined the impact on intestinal gene expression of three isocaloric HFDs that differed only in their fatty acid composition-coconut oil (saturated fats), conventional soybean oil (polyunsaturated fats) and a genetically modified soybean oil (monounsaturated fats). Four functionally distinct segments of the mouse intestinal tract were analyzed using RNA-seq-duodenum, jejunum, terminal ileum and proximal colon. We found considerable dysregulation of genes in multiple tissues with the different diets, including those encoding nuclear receptors and genes involved in xenobiotic and drug metabolism, epithelial barrier function, IBD and colon cancer as well as genes associated with the microbiome and COVID-19. Network analysis shows that genes involved in metabolism tend to be upregulated by the HFDs while genes related to the immune system are downregulated; neurotransmitter signaling was also dysregulated by the HFDs. Genomic sequencing also revealed a microbiome altered by the HFDs. This study highlights the potential impact of different HFDs on gut health with implications for the organism as a whole and will serve as a reference for gene expression along the length of the intestines.


Assuntos
Neoplasias do Colo , Doenças Inflamatórias Intestinais , Microbiota , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Óleo de Soja , Gorduras na Dieta/farmacologia , Gorduras na Dieta/metabolismo , Ácidos Graxos , Íleo/metabolismo , Expressão Gênica
8.
Front Endocrinol (Lausanne) ; 14: 1266527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111711

RESUMO

Hepatocyte Nuclear Factor 4α (HNF4α), a master regulator of hepatocyte differentiation, is regulated by two promoters (P1 and P2) which drive the expression of different isoforms. P1-HNF4α is the major isoform in the adult liver while P2-HNF4α is thought to be expressed only in fetal liver and liver cancer. Here, we show that P2-HNF4α is indeed expressed in the normal adult liver at Zeitgeber time (ZT)9 and ZT21. Using exon swap mice that express only P2-HNF4α we show that this isoform orchestrates a distinct transcriptome and metabolome via unique chromatin and protein-protein interactions, including with different clock proteins at different times of the day leading to subtle differences in circadian gene regulation. Furthermore, deletion of the Clock gene alters the circadian oscillation of P2- (but not P1-)HNF4α RNA, revealing a complex feedback loop between the HNF4α isoforms and the hepatic clock. Finally, we demonstrate that while P1-HNF4α drives gluconeogenesis, P2-HNF4α drives ketogenesis and is required for elevated levels of ketone bodies in female mice. Taken together, we propose that the highly conserved two-promoter structure of the Hnf4a gene is an evolutionarily conserved mechanism to maintain the balance between gluconeogenesis and ketogenesis in the liver in a circadian fashion.


Assuntos
Fator 4 Nuclear de Hepatócito , Metabolismo dos Lipídeos , Animais , Feminino , Camundongos , Carboidratos , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
9.
Gut Microbes ; 15(1): 2229945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37400966

RESUMO

Inflammatory bowel disease (IBD) is a multifactorial disease with increasing incidence in the U.S. suggesting that environmental factors, including diet, are involved. It has been suggested that excessive consumption of linoleic acid (LA, C18:2 omega-6), which must be obtained from the diet, may promote the development of IBD in humans. To demonstrate a causal link between LA and IBD, we show that a high fat diet (HFD) based on soybean oil (SO), which is comprised of ~55% LA, increases susceptibility to colitis in several models, including IBD-susceptible IL10 knockout mice. This effect was not observed with low-LA HFDs derived from genetically modified soybean oil or olive oil. The conventional SO HFD causes classical IBD symptoms including immune dysfunction, increased intestinal epithelial barrier permeability, and disruption of the balance of isoforms from the IBD susceptibility gene Hepatocyte Nuclear Factor 4α (HNF4α). The SO HFD causes gut dysbiosis, including increased abundance of an endogenous adherent invasive Escherichia coli (AIEC), which can use LA as a carbon source. Metabolomic analysis shows that in the mouse gut, even in the absence of bacteria, the presence of soybean oil increases levels of LA, oxylipins and prostaglandins. Many compounds in the endocannabinoid system, which are protective against IBD, are decreased by SO both in vivo and in vitro. These results indicate that a high LA diet increases susceptibility to colitis via microbial and host-initiated pathways involving alterations in the balance of bioactive metabolites of omega-6 and omega-3 polyunsaturated fatty acids, as well as HNF4α isoforms.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Endocanabinoides , Óleo de Soja , Ácido Linoleico , Colite/induzido quimicamente , Colite/genética , Colite/microbiologia , Dieta Hiperlipídica/efeitos adversos
10.
BMC Genomics ; 12: 560, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22085832

RESUMO

BACKGROUND: Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression. RESULTS: Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1), are highly prevalent in Alu repeats. We employ high throughput protein binding microarrays (PBMs) to show that HNF4α binds > 66 unique sequences in Alu repeats that are present in ~1.2 million locations in the human genome. We use chromatin immunoprecipitation (ChIP) to demonstrate that HNF4α binds Alu elements in the promoters of target genes (ABCC3, APOA4, APOM, ATPIF1, CANX, FEMT1A, GSTM4, IL32, IP6K2, PRLR, PRODH2, SOCS2, TTR) and luciferase assays to show that at least some of those Alu elements can modulate HNF4α-mediated transactivation in vivo (APOM, PRODH2, TTR, APOA4). HNF4α-Alu elements are enriched in promoters of genes involved in RNA processing and a sizeable fraction are in regions of accessible chromatin. Comparative genomics analysis suggests that there may have been a gain in HNF4α binding sites in Alu elements during evolution and that non Alu repeats, such as Tiggers, also contain HNF4α sites. CONCLUSIONS: Our findings suggest that HNF4α, in addition to regulating gene expression via high affinity binding sites, may also modulate transcription via low affinity sites in Alu repeats.


Assuntos
Elementos Alu , Fator 4 Nuclear de Hepatócito/genética , Sítios de Ligação , Biologia Computacional , Genoma Humano , Células HEK293 , Fator 4 Nuclear de Hepatócito/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Regiões Promotoras Genéticas , Análise Serial de Proteínas , Ligação Proteica/genética , Transcrição Gênica , Ativação Transcricional
11.
Hepatology ; 51(2): 642-53, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20054869

RESUMO

UNLABELLED: Hepatocyte nuclear factor 4 alpha (HNF4alpha), a member of the nuclear receptor superfamily, is essential for liver function and is linked to several diseases including diabetes, hemophilia, atherosclerosis, and hepatitis. Although many DNA response elements and target genes have been identified for HNF4alpha, the complete repertoire of binding sites and target genes in the human genome is unknown. Here, we adapt protein binding microarrays (PBMs) to examine the DNA-binding characteristics of two HNF4alpha species (rat and human) and isoforms (HNF4alpha2 and HNF4alpha8) in a high-throughput fashion. We identified approximately 1400 new binding sequences and used this dataset to successfully train a Support Vector Machine (SVM) model that predicts an additional approximately 10,000 unique HNF4alpha-binding sequences; we also identify new rules for HNF4alpha DNA binding. We performed expression profiling of an HNF4alpha RNA interference knockdown in HepG2 cells and compared the results to a search of the promoters of all human genes with the PBM and SVM models, as well as published genome-wide location analysis. Using this integrated approach, we identified approximately 240 new direct HNF4alpha human target genes, including new functional categories of genes not typically associated with HNF4alpha, such as cell cycle, immune function, apoptosis, stress response, and other cancer-related genes. CONCLUSION: We report the first use of PBMs with a full-length liver-enriched transcription factor and greatly expand the repertoire of HNF4alpha-binding sequences and target genes, thereby identifying new functions for HNF4alpha. We also establish a web-based tool, HNF4 Motif Finder, that can be used to identify potential HNF4alpha-binding sites in any sequence.


Assuntos
Fator 4 Nuclear de Hepatócito/genética , Análise Serial de Proteínas , Animais , Humanos , Fígado/citologia , Ratos
12.
Cancer Lett ; 496: 127-133, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039560

RESUMO

Chronic elevated free fatty (FFA) levels are linked to metabolic disorders and tumorigenesis. However, the molecular mechanism by which FFAs induce cancer remains poorly understood. Here, we show that the tumor suppressor PTEN protein levels were decreased in high fat diet (HFD) fed mice. As palmitic acid (PA, C16:0) showed a significant increase in the HFD fed mice, we further investigated its role in PTEN down regulation. Our studies revealed that exposure of cells to high doses of PA induced mTOR/S6K-mediated phosphorylation of PTEN at T366. The phosphorylation subsequently enhanced the interaction of PTEN with the E3 ubiquitin ligase WW domain-containing protein 2 (WWP2), which promoted polyubiquitination of PTEN and protein degradation. Consistent with PTEN degradation, exposure of cells to increased concentrations of PA also promoted PTEN-mediated AKT activation and cell proliferation. Significantly, a higher level of S6K activation, PTEN T366 phosphorylation, and AKT activation were also observed in the livers of the HFD fed mice. These results provide a molecular mechanism by which a HFD and elevated PA regulate cell proliferation through inactivation of tumor suppressor PTEN.


Assuntos
Proliferação de Células , Neoplasias do Colo/patologia , Obesidade/patologia , PTEN Fosfo-Hidrolase/metabolismo , Ácido Palmítico/farmacologia , Treonina/metabolismo , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Inibidores Enzimáticos/farmacologia , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosforilação , Proteólise , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Treonina/química , Treonina/genética , Ubiquitinação
13.
Mol Endocrinol ; 23(4): 434-43, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19179483

RESUMO

Mutations in the coding region of hepatocyte nuclear factor 4alpha (HNF4alpha), and its upstream promoter (P2) that drives expression in the pancreas, are known to lead to maturity-onset diabetes of the young 1 (MODY1). HNF4alpha also controls gluconeogenesis and lipid metabolism in the liver, where the proximal promoter (P1) predominates. However, very little is known about the role of hepatic HNF4alpha in diabetes. Here, we examine the expression of hepatic HNF4alpha in two diabetic mouse models, db/db mice (type 2, insulin resistant) and streptozotocin-treated mice (type 1, insulin deficient). We found that the level of HNF4alpha protein and mRNA was decreased in the liver of db/db mice but increased in streptozotocin-treated mice. Because insulin increases the activity of sterol regulatory element-binding proteins (SREBP)-1c and -2, we also examined the effect of SREBPs on hepatic HNF4alpha gene expression and found that, like insulin, ectopic expression of SREBPs decreases the level of hepatic HNF4alpha protein and mRNA both in vitro in primary hepatocytes and in vivo in the liver of C57BL/6 mice. Finally, we use gel shift, chromatin immunoprecipitation, small interfering RNA, and reporter gene analysis to show that SREBP2 binds the human HNF4alpha P1 promoter and negatively regulates its expression. These data indicate that hyperinsulinemia down-regulates HNF4alpha in the liver through the up-regulation of SREBPs, thereby establishing a link between these two critical transcription factor pathways that regulate lipid and glucose metabolism in the liver. These findings also provide new insights into diabetes-associated complications such as fatty liver disease.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito , Hiperinsulinismo/metabolismo , Fígado/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Regulação para Baixo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Hiperinsulinismo/fisiopatologia , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Interferência de RNA , Ratos , Alinhamento de Sequência , Proteínas de Ligação a Elemento Regulador de Esterol/genética
14.
Endocrinology ; 161(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31912136

RESUMO

Soybean oil consumption has increased greatly in the past half-century and is linked to obesity and diabetes. To test the hypothesis that soybean oil diet alters hypothalamic gene expression in conjunction with metabolic phenotype, we performed RNA sequencing analysis using male mice fed isocaloric, high-fat diets based on conventional soybean oil (high in linoleic acid, LA), a genetically modified, low-LA soybean oil (Plenish), and coconut oil (high in saturated fat, containing no LA). The 2 soybean oil diets had similar but nonidentical effects on the hypothalamic transcriptome, whereas the coconut oil diet had a negligible effect compared to a low-fat control diet. Dysregulated genes were associated with inflammation, neuroendocrine, neurochemical, and insulin signaling. Oxt was the only gene with metabolic, inflammation, and neurological relevance upregulated by both soybean oil diets compared to both control diets. Oxytocin immunoreactivity in the supraoptic and paraventricular nuclei of the hypothalamus was reduced, whereas plasma oxytocin and hypothalamic Oxt were increased. These central and peripheral effects of soybean oil diets were correlated with glucose intolerance but not body weight. Alterations in hypothalamic Oxt and plasma oxytocin were not observed in the coconut oil diet enriched in stigmasterol, a phytosterol found in soybean oil. We postulate that neither stigmasterol nor LA is responsible for effects of soybean oil diets on oxytocin and that Oxt messenger RNA levels could be associated with the diabetic state. Given the ubiquitous presence of soybean oil in the American diet, its observed effects on hypothalamic gene expression could have important public health ramifications.


Assuntos
Diabetes Mellitus/etiologia , Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Ocitocina/sangue , Óleo de Soja/efeitos adversos , Animais , Inflamação/etiologia , Ácido Linoleico/efeitos adversos , Masculino , Camundongos , Doenças do Sistema Nervoso/etiologia , Obesidade/etiologia , Estigmasterol/efeitos adversos
15.
Mol Endocrinol ; 22(1): 78-90, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17885207

RESUMO

The dichotomy between cellular differentiation and proliferation is a fundamental aspect of both normal development and tumor progression; however, the molecular basis of this opposition is not well understood. To address this issue, we investigated the mechanism by which the nuclear receptor hepatocyte nuclear factor 4alpha1 (HNF4alpha1) regulates the expression of the human cyclin-dependent kinase inhibitor gene p21/WAF1 (CDKN1A). We found that HNF4alpha1, a transcription factor that plays a central role in differentiation in the liver, pancreas, and intestine, activates the expression of p21 primarily by interacting with promoter-bound Sp1 at both the proximal promoter region and at newly identified sites in a distal region (-2.4 kb). Although HNF4alpha1 also binds two additional regions containing putative HNF4alpha binding sites, HNF4alpha1 mutants deficient in DNA binding activate the p21 promoter to the same extent as wild-type HNF4alpha1, indicating that direct DNA binding by HNF4alpha1 is not necessary for p21 activation. We also observed an in vitro and in vivo interaction between HNF4alpha1 and c-Myc as well as a competition between these two transcription factors for interaction with promoter-bound Sp1 and regulation of p21. Finally, we show that c-Myc competes with HNF4alpha1 for control of apolipoprotein C3 (APOC3), a gene associated with the differentiated hepatic phenotype. These results suggest a general model by which a differentiation factor (HNF4alpha1) and a proliferation factor (c-Myc) may compete for control of genes involved in cell proliferation and differentiation.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Adenoviridae/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Proliferação de Células , Eletroforese em Gel de Poliacrilamida , Fator 4 Nuclear de Hepatócito/genética , Humanos , Imunoprecipitação , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Front Pharmacol ; 10: 580, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191316

RESUMO

Dimethylsulfoxide (DMSO) is widely used as a solvent and cryopreservative in laboratories and considered to have many beneficial health effects in humans. Oxylipins are a class of biologically active metabolites of polyunsaturated fatty acids (PUFAs) that have been linked to a number of diseases. In this study, we investigated the effect of DMSO on oxylipin levels in mouse liver. Liver tissue from male mice (C57Bl6/N) that were either untreated or injected with 1% DMSO at 18 weeks of age was analyzed for oxylipin levels using ultrahigh performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). A decrease in oxylipin diols from linoleic acid (LA, C18:2n6), alpha-linolenic acid (ALA, C18:3n3) and docosahexeanoic acid (DHA, C22:6n3) was observed 2 h after injection with DMSO. In contrast, DMSO had no effect on the epoxide precursors or other oxylipins including those derived from arachidonic acid (C20:4n6) or eicosapentaenoic acid (EPA, C20:5n3). It also did not significantly affect the diol:epoxide ratio, suggesting a pathway distinct from, and potentially complementary to, soluble epoxide hydrolase inhibitors (sEHI). Since oxylipins have been associated with a wide array of pathological conditions, from arthritis pain to obesity, our results suggest one potential mechanism underlying the apparent beneficial health effects of DMSO. They also indicate that caution should be used in the interpretation of results using DMSO as a vehicle in animal experiments.

17.
Cancer Res ; 79(22): 5860-5873, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31575546

RESUMO

The incidence of hepatocellular carcinoma (HCC) is on the rise worldwide. Although the incidence of HCC in males is considerably higher than in females, the projected rates of HCC incidence are increasing for both sexes. A recently appreciated risk factor for HCC is the growing problem of nonalcoholic fatty liver disease, which is usually associated with obesity and the metabolic syndrome. In this study, we showed that under conditions of fatty liver, female mice were more likely to develop HCC than expected from previous models. Using an inducible knockout model of the tumor-suppressive isoform of hepatocyte nuclear factor 4 alpha ("P1-HNF4α") in the liver in combination with prolonged high fat (HF) diet, we found that HCC developed equally in male and female mice as early as 38 weeks of age. Similar sex-independent HCC occurred in the "STAM" model of mice, in which severe hyperglycemia and HF feeding results in rapid hepatic lipid deposition, fibrosis, and ultimately HCC. In both sexes, reduced P1-HNF4α activity, which also occurs under chronic HF diet feeding, increased hepatic lipid deposition and produced a greatly augmented circadian rhythm in IL6, a factor previously linked with higher HCC incidence in males. Loss of HNF4α combined with HF feeding induced epithelial-mesenchymal transition in an IL6-dependent manner. Collectively, these data provide a mechanism-based working hypothesis that could explain the rising incidence of aggressive HCC. SIGNIFICANCE: This study provides a mechanism for the growing incidence of hepatocellular carcinoma in both men and women, which is linked to nonalcoholic fatty liver disease.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
18.
Gene Expr Patterns ; 8(2): 96-106, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17996499

RESUMO

The type 1, 3, and 5 forms of maturity-onset diabetes of the young (MODY) are caused by mutations of the genes encoding hepatocyte nuclear factor (HNF)-4alpha, HNF-1alpha, and HNF-1beta, respectively [Yamagata, K., Oda, N., Kaisaki, P.J., Menzel, S., Furuta, H., Vaxillaire, M., et al., 1996a. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384, 455-458; Yamagata, K., Furuta, H., Oda, N., Kaisaki, P.J., Menzel, S., Cox, N.J., et al., 1996b. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 384, 458-460; Horikawa, Y., Iwasaki, N., Hara, M., Furuta, H., Hinokio, Y., Cockburn, B.N. et al., 1997. Mutation in hepatocyte nuclear factor-1beta gene (TCF2) associated with MODY. Nat. Genet. 17, 384-385]. Among these transcription factors, the pattern of HNF-4alpha expression during pancreatic differentiation remains largely unknown. We performed an immunohistochemical study to investigate its expression in comparison with the expression of HNF-1alpha and HNF-1beta. We found considerable variation in the level of HNF-4alpha expression by the individual epithelial cells in the pancreatic buds on E9.5. HNF-4alpha and HNF-1beta were initially expressed by Pdx1(+) common progenitor cells and neurogenin3(+) (Ngn3(+)) endocrine precursor cells during the first transition, but expression of HNF-1beta and either HNF-4alpha or HNF-1alpha became complementary around the end of the second transition (E15.5). In the mature pancreas, HNF-4alpha was expressed by glucagon-positive alpha-cells, insulin-positive beta-cells, somatostatin-positive delta-cells, and pancreatic polypeptide-positive PP-cells, as well as by pancreatic exocrine cells and ductal cells. Most of the HNF-4alpha(+) cells were also positive for HNF-1alpha, but HNF-4alpha expression in some non-beta-cells was remarkably high, and this was not paralleled by high HNF-1alpha expression. These results indicate that the expression of MODY proteins in each of the pancreatic cell types is strictly regulated in accordance with the status of differentiation during pancreatic organogenesis.


Assuntos
Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Pâncreas/embriologia , Pâncreas/metabolismo , Animais , Embrião de Mamíferos , Imuno-Histoquímica , Camundongos
19.
Mol Endocrinol ; 21(6): 1297-311, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17389749

RESUMO

Nuclear receptors (NRs) are a superfamily of transcription factors whose genomic functions are known to be activated by lipophilic ligands, but little is known about how to deactivate them or how to turn on their nongenomic functions. One obvious mechanism is to alter the nuclear localization of the receptors. Here, we show that protein kinase C (PKC) phosphorylates a highly conserved serine (Ser) between the two zinc fingers of the DNA binding domain of orphan receptor hepatocyte nuclear factor 4alpha (HNF4alpha). This Ser (S78) is adjacent to several positively charged residues (Arg or Lys), which we show here are involved in nuclear localization of HNF4alpha and are conserved in nearly all other NRs, along with the Ser/threonine (Thr). A phosphomimetic mutant of HNF4alpha (S78D) reduced DNA binding, transactivation ability, and protein stability. It also impaired nuclear localization, an effect that was greatly enhanced in the MODY1 mutant Q268X. Treatment of the hepatocellular carcinoma cell line HepG2 with PKC activator phorbol 12-myristate 13-acetate also resulted in increased cytoplasmic localization of HNF4alpha as well as decreased endogenous HNF4alpha protein levels in a proteasome-dependent fashion. We also show that PKC phosphorylates the DNA binding domain of other NRs (retinoic acid receptor alpha, retinoid X receptor alpha, and thyroid hormone receptor beta) and that phosphomimetic mutants of the same Ser/Thr result in cytoplasmic localization of retinoid X receptor alpha and peroxisome proliferator-activated receptor alpha. Thus, phosphorylation of this conserved Ser between the two zinc fingers may be a common mechanism for regulating the function of NRs.


Assuntos
Fator 4 Nuclear de Hepatócito/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Serina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Núcleo Celular/química , Núcleo Celular/metabolismo , Sequência Conservada , Citoplasma/química , Citoplasma/metabolismo , DNA/metabolismo , Regulação para Baixo , Fator 4 Nuclear de Hepatócito/análise , Fator 4 Nuclear de Hepatócito/genética , Humanos , Dados de Sequência Molecular , Mutação , Fosforilação , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptores Citoplasmáticos e Nucleares/análise , Receptores Citoplasmáticos e Nucleares/genética , Acetato de Tetradecanoilforbol/farmacologia , Ativação Transcricional
20.
J Steroid Biochem Mol Biol ; 184: 3-10, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29510228

RESUMO

Nuclear receptors are a superfamily of transcription factors restricted to animals. These transcription factors regulate a wide variety of genes with diverse roles in cellular homeostasis, development, and physiology. The origin and specificity of ligand binding within lineages of nuclear receptors (e.g., subfamilies) continues to be a focus of investigation geared toward understanding how the functions of these proteins were shaped over evolutionary history. Among early-diverging animal lineages, the retinoid X receptor (RXR) is first detected in the placozoan, Trichoplax adhaerens. To gain insight into RXR evolution, we characterized ligand- and DNA-binding activity of the RXR from T. adhaerens (TaRXR). Like bilaterian RXRs, TaRXR specifically bound 9-cis-retinoic acid, which is consistent with a recently published result and supports a conclusion that the ancestral RXR bound ligand. DNA binding site specificity of TaRXR was determined through protein binding microarrays (PBMs) and compared with human RXRɑ. The binding sites for these two RXR proteins were broadly conserved (∼85% shared high-affinity sequences within a targeted array), suggesting evolutionary constraint for the regulation of downstream genes. We searched for predicted binding motifs of the T. adhaerens genome within 1000 bases of annotated genes to identify potential regulatory targets. We identified 648 unique protein coding regions with predicted TaRXR binding sites that had diverse predicted functions, with enriched processes related to intracellular signal transduction and protein transport. Together, our data support hypotheses that the original RXR protein in animals bound a ligand with structural similarity to 9-cis-retinoic acid; the DNA motif recognized by RXR has changed little in more than 1 billion years of evolution; and the suite of processes regulated by this transcription factor diversified early in animal evolution.


Assuntos
Alitretinoína/metabolismo , DNA/genética , Placozoa/genética , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Humanos , Ligantes , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA