Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(29): e2122237119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858324

RESUMO

We use the continuum micromagnetic framework to derive the formulas for compact skyrmion lifetime due to thermal noise in ultrathin ferromagnetic films with relatively weak interfacial Dzyaloshinskii-Moriya interaction. In the absence of a saddle point connecting the skyrmion solution to the ferromagnetic state, we interpret the skyrmion collapse event as "capture by an absorber" at microscale. This yields an explicit Arrhenius collapse rate with both the barrier height and the prefactor as functions of all the material parameters, as well as the dynamical paths to collapse.

2.
Proc Math Phys Eng Sci ; 473(2197): 20160666, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28265192

RESUMO

Recent advances in nanofabrication make it possible to produce multilayer nanostructures composed of ultrathin film materials with thickness down to a few monolayers of atoms and lateral extent of several tens of nanometers. At these scales, ferromagnetic materials begin to exhibit unusual properties, such as perpendicular magnetocrystalline anisotropy and antisymmetric exchange, also referred to as Dzyaloshinskii-Moriya interaction (DMI), because of the increased importance of interfacial effects. The presence of surface DMI has been demonstrated to fundamentally alter the structure of domain walls. Here we use the micromagnetic modelling framework to analyse the existence and structure of chiral domain walls, viewed as minimizers of a suitable micromagnetic energy functional. We explicitly construct the minimizers in the one-dimensional setting, both for the interior and edge walls, for a broad range of parameters. We then use the methods of Γ-convergence to analyse the asymptotics of the two-dimensional magnetization patterns in samples of large spatial extent in the presence of weak applied magnetic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA