Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(8): e202303509, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38212244

RESUMO

Triarylhydrazones represent an attractive class of photochromic compounds offering many interesting features including high molar absorptivity, good addressability, and extraordinary thermal stability. In addition, unlike most other hydrazone-based photoswitches, they effectively absorb light above 365 nm. However, previously prepared triaryhydrazones suffer from low quantum yields of the Z→E photoisomerization. Here, we have designed a new subclass of naphthoyl-benzothiazole hydrazones that balance the most beneficial features of previously reported naphthoyl-quinoline and benzoyl-pyridine triarylhydrazones. These preserve the attractive absorption characteristics, exhibit higher thermal stability of the metastable form than the former and enhance the rate of the Z→E photoisomerization compared to the later, as a result of the weakening of the intramolecular hydrogen bonding between the hydrazone hydrogen and the benzothiazole moiety. Introducing the benzothiazole motif extends the tunability of the photochromic behaviour of hydrazone-based switches.

2.
Chemistry ; 30(8): e202400141, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38263845

RESUMO

Invited for the cover of this issue are Marek Cigán, Anna M. Grabarz and co-workers. The image depicts how a non-expert might imagine a "molecular photoswitch". Read the full text of the article at 10.1002/chem.202303509.

3.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396858

RESUMO

After recent approvals, poly-adenosine diphosphate [ADP]-ribose polymerase inhibitors (PARPis) have emerged as a frontline treatment for metastatic castration-resistant prostate cancer (mCRPC). Unlike their restricted use in breast or ovarian cancers, where approval is limited to those with BRCA1/2 alterations, PARPis in mCRPC are applied across a broader spectrum of genetic aberrations. Key findings from the phase III PROPEL trial suggest that PARPis' accessibility may broaden, even without mandatory testing. An increasing body of evidence underscores the importance of distinct alterations in homologous recombination repair (HRR) genes, revealing unique sensitivities to PARPis. Nonetheless, despite the initial effectiveness of PARPis in treating BRCA-mutated tumors, resistance to therapy is frequently encountered. This review aims to discuss patient stratification based on biomarkers and genetic signatures, offering insights into the nuances of first-line PARPis' efficacy in the intricate landscape of mCRPC.


Assuntos
Proteína BRCA1 , Neoplasias de Próstata Resistentes à Castração , Masculino , Feminino , Humanos , Proteína BRCA1/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Medicina de Precisão , Proteína BRCA2/genética , Poli(ADP-Ribose) Polimerases
4.
Angew Chem Int Ed Engl ; 63(10): e202314112, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38059778

RESUMO

Compounds with multiple photoswitching units are appealing for complex photochemical control of molecular materials and nanostructures. Herein, we synthesized novel meta- and para- connected (related to the nitrogen of the indoline) azobenzene-spiropyran dyads, in which the central benzene unit is shared by both switches. We investigated their photochemistry using static and time-resolved transient absorption spectroscopy as well as quantum chemical calculations. In the meta-compound, the individual components are photochemically decoupled due to the meta-pattern. In the para-compound the spiro-connectivity leads to a bifunctional photoswitchable system with a red-shifted absorption. The azobenzene and the spiropyran can thus be addressed and switched independently by light of appropriate wavelength. Through the different connectivity patterns two different orthogonally photoswitchable systems have been obtained which are promising candidates for complex applications of light control.

5.
Proc Natl Acad Sci U S A ; 117(28): 16356-16362, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32591422

RESUMO

Phytochromes are a diverse family of bilin-binding photoreceptors that regulate a wide range of physiological processes. Their photochemical properties make them attractive for applications in optogenetics and superresolution microscopy. Phytochromes undergo reversible photoconversion triggered by the Z ⇄ E photoisomerization about the double bond in the bilin chromophore. However, it is not fully understood at the molecular level how the protein framework facilitates the complex photoisomerization dynamics. We have studied a single-domain bilin-binding photoreceptor All2699g1 (Nostoc sp. PCC 7120) that exhibits photoconversion between the red light-absorbing (Pr) and far red-absorbing (Pfr) states just like canonical phytochromes. We present the crystal structure and examine the photoisomerization mechanism of the Pr form as well as the formation of the primary photoproduct Lumi-R using time-resolved spectroscopy and hybrid quantum mechanics/molecular mechanics simulations. We show that the unusually long excited state lifetime (broad lifetime distribution centered at ∼300 picoseconds) is due to the interactions between the isomerizing pyrrole ring D and an adjacent conserved Tyr142. The decay kinetics shows a strongly distributed character which is imposed by the nonexponential protein dynamics. Our findings offer a mechanistic insight into how the quantum efficiency of the bilin photoisomerization is tuned by the protein environment, thereby providing a structural framework for engineering bilin-based optical agents for imaging and optogenetics applications.


Assuntos
Fitocromo/química , Fitocromo/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Cristalografia por Raios X , Isomerismo , Cinética , Modelos Moleculares , Nostoc/metabolismo , Processos Fotoquímicos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Conformação Proteica , Análise Espectral , Relação Estrutura-Atividade
6.
Photochem Photobiol Sci ; 21(9): 1627-1636, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35687310

RESUMO

The ability of some knotless phytochromes to photoconvert without the PHY domain allows evaluation of the distinct effect of the PHY domain on their photodynamics. Here, we compare the ms dynamics of the single GAF domain (g1) and the GAF-PHY (g1g2) construct of the knotless phytochrome All2699 from cyanobacterium Nostoc punctiforme. While the spectral signatures and occurrence of the intermediates are mostly unchanged by the domain composition, the presence of the PHY domain slows down the early forward and reverse dynamics involving chromophore and protein binding pocket relaxation. We assign this effect to a more restricted binding pocket imprinted by the PHY domain. The photoproduct formation is also slowed down by the presence of the PHY domain but to a lesser extent than the early dynamics. This indicates a rate limiting step within the GAF and not the PHY domain. We further identify a pH dependence of the biphasic photoproduct formation hinting towards a pKa dependent tuning mechanism. Our findings add to the understanding of the role of the individual domains in the photocycle dynamics and provide a basis for engineering of phytochromes towards biotechnological applications.


Assuntos
Nostoc , Fitocromo , Proteínas de Bactérias/química , Nostoc/metabolismo , Fitocromo/química , Ligação Proteica
7.
Biophys J ; 120(3): 568-575, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33347887

RESUMO

We investigated the temperature-dependent kinetics of the light-driven Na+ pump Krokinobacter rhodopsin 2 (KR2) at Na+-pumping conditions. The recorded microsecond flash photolysis data were subjected to detailed global target analysis, employing Eyring constraints and spectral decomposition. The analysis resulted in the kinetic rates, the composition of the different photocycle equilibria, and the spectra of the involved photointermediates. Our results show that with the temperature increase (from 10 to 40°C), the overall photocycle duration is accelerated by a factor of 6, with the L-to-M transition exhibiting an impressive 40-fold increase. It follows from the analysis that in KR2 the chromophore and the protein scaffold are more kinetically decoupled than in other microbial rhodopsins. We link this effect to the rigidity of the retinal protein environment. This kinetic decoupling should be considered in future studies and could potentially be exploited for fine-tuning biotechnological applications.


Assuntos
Flavobacteriaceae , Rodopsina , Cinética , Luz , Rodopsinas Microbianas , Temperatura
8.
J Org Chem ; 86(17): 11633-11646, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34323500

RESUMO

The design of P-type photoswitches with thermal stability of the metastable form of hundreds of years that would efficiently transform using excitation wavelengths above 350 nm remains a challenge in the field of photochromism. In this regard, we designed and synthesized an extended set of 13 pyridine/quinoline hydrazones and systematically investigated the structure-property relationships, defining their kinetic and photoswitching parameters. We show that the operational wavelengths of the pyridine hydrazone structural motif can be effectively shifted toward the visible region without simultaneous loss of their high thermal stability. Furthermore, we characterized the ground-state and excited-state potential energy surfaces with quantum-chemical calculations and ultrafast transient absorption spectroscopy, which allowed us to rationalize both the thermal and photochemical reaction mechanisms of the designed hydrazones. Whereas introducing an electron-withdrawing pyridyl moiety in benzoylpyridine hydrazones leads to thermal stabilities exceeding 200 years, extended π-conjugation in naphthoylquinoline hydrazones pushes the absorption maxima toward the visible spectral region. In either case, the compounds retain highly efficient photoswitching characteristics. Our findings open a route to the rational design of a new family of hydrazone-based P-type photoswitches with high application potential in photonics or photopharmacology.

9.
Eur J Epidemiol ; 36(9): 913-925, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34275018

RESUMO

While being in a committed relationship is associated with a better prostate cancer prognosis, little is known about how marital status relates to its incidence. Social support provided by marriage/relationship could promote a healthy lifestyle and an increased healthcare seeking behavior. We investigated the association between marital status and prostate cancer risk using data from the PRACTICAL Consortium. Pooled analyses were conducted combining 12 case-control studies based on histologically-confirmed incident prostate cancers and controls with information on marital status prior to diagnosis/interview. Marital status was categorized as married/partner, separated/divorced, single, or widowed. Tumours with Gleason scores ≥ 8 defined high-grade cancers, and low-grade otherwise. NCI-SEER's summary stages (local, regional, distant) indicated the extent of the cancer. Logistic regression was used to derive odds ratios (ORs) and 95% confidence intervals (CI) for the association between marital status and prostate cancer risk, adjusting for potential confounders. Overall, 14,760 cases and 12,019 controls contributed to analyses. Compared to men who were married/with a partner, widowed men had an OR of 1.19 (95% CI 1.03-1.35) of prostate cancer, with little difference between low- and high-grade tumours. Risk estimates among widowers were 1.14 (95% CI 0.97-1.34) for local, 1.53 (95% CI 1.22-1.92) for regional, and 1.56 (95% CI 1.05-2.32) for distant stage tumours. Single men had elevated risks of high-grade cancers. Our findings highlight elevated risks of incident prostate cancer among widowers, more often characterized by tumours that had spread beyond the prostate at the time of diagnosis. Social support interventions and closer medical follow-up in this sub-population are warranted.


Assuntos
Adenocarcinoma/epidemiologia , Estado Civil , Neoplasias da Próstata/epidemiologia , Idoso , Divórcio , Humanos , Incidência , Masculino , Casamento , Pessoa de Meia-Idade , Vigilância da População , Pessoa Solteira , Apoio Social
10.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639031

RESUMO

The family of phytochrome photoreceptors contains proteins with different domain architectures and spectral properties. Knotless phytochromes are one of the three main subgroups classified by their distinct lack of the PAS domain in their photosensory core module, which is in contrast to the canonical PAS-GAF-PHY array. Despite intensive research on the ultrafast photodynamics of phytochromes, little is known about the primary kinetics in knotless phytochromes. Here, we present the ultrafast Pr ⇆ Pfr photodynamics of SynCph2, the best-known knotless phytochrome. Our results show that the excited state lifetime of Pr* (~200 ps) is similar to bacteriophytochromes, but much longer than in most canonical phytochromes. We assign the slow Pr* kinetics to relaxation processes of the chromophore-binding pocket that controls the bilin chromophore's isomerization step. The Pfr photoconversion dynamics starts with a faster excited state relaxation than in canonical phytochromes, but, despite the differences in the respective domain architectures, proceeds via similar ground state intermediate steps up to Meta-F. Based on our observations, we propose that the kinetic features and overall dynamics of the ultrafast photoreaction are determined to a great extent by the geometrical context (i.e., available space and flexibility) within the binding pocket, while the general reaction steps following the photoexcitation are most likely conserved among the red/far-red phytochromes.


Assuntos
Processos Fotoquímicos , Fitocromo/química , Fitocromo/metabolismo , Cinética , Luz , Modelos Moleculares , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Conformação Proteica , Análise Espectral , Relação Estrutura-Atividade
11.
Angew Chem Int Ed Engl ; 60(42): 23010-23017, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339559

RESUMO

The new class of microbial rhodopsins, called xenorhodopsins (XeRs),[1] extends the versatility of this family by inward H+ pumps.[2-4] These pumps are an alternative optogenetic tool to the light-gated ion channels (e.g. ChR1,2), because the activation of electrically excitable cells by XeRs is independent from the surrounding physiological conditions. In this work we functionally and spectroscopically characterized XeR from Nanosalina (NsXeR).[1] The photodynamic behavior of NsXeR was investigated on the ps to s time scale elucidating the formation of the J and K and a previously unknown long-lived intermediate. The pH dependent kinetics reveal that alkalization of the surrounding medium accelerates the photocycle and the pump turnover. In patch-clamp experiments the blue-light illumination of NsXeR in the M state shows a potential-dependent vectoriality of the photocurrent transients, suggesting a variable accessibility of reprotonation of the retinal Schiff base. Insights on the kinetically independent switching mechanism could furthermore be obtained by mutational studies on the putative intracellular H+ acceptor D220.


Assuntos
Bombas de Próton/metabolismo , Rodopsinas Microbianas/metabolismo , Bases de Schiff/química , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Cinética , Luz , Optogenética , Bombas de Próton/química , Prótons , Rodopsinas Microbianas/química , Espectrofotometria , Temperatura
12.
Chemistry ; 26(71): 17261-17266, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-32812681

RESUMO

Phytochrome photoreceptors operate via photoisomerization of a bound bilin chromophore. Their typical architecture consists of GAF, PAS and PHY domains. Knotless phytochromes lack the PAS domain, while retaining photoconversion abilities, with some being able to photoconvert with just the GAF domain. Therefore, we investigated the ultrafast photoisomerization of the Pr state of a knotless phytochrome to reveal the effect of the PHY domain and its "tongue" region on the transduction of the light signal. We show that the PHY domain does not affect the initial conformational dynamics of the chromophore. However, it significantly accelerates the consecutively induced reorganizational dynamics of the protein, necessary for the progression of the photoisomerization. Consequently, the PHY domain keeps the bilin and its binding pocket in a more reactive conformation, which decreases the extent of protein reorganization required for the chromophore isomerization. Thereby, less energy is lost along nonproductive reaction pathways, resulting in increased efficiency.


Assuntos
Fitocromo , Proteínas de Bactérias/química , Conformação Molecular , Fitocromo/metabolismo
13.
Angew Chem Int Ed Engl ; 59(1): 380-387, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31595575

RESUMO

Azoheteroarene photoswitches have attracted attention due to their unique properties. We present the stationary photochromism and ultrafast photoisomerization mechanism of thiophenylazobenzene (TphAB). It demonstrates impressive fatigue resistance and photoisomerization efficiency, and shows favorably separated (E)- and (Z)-isomer absorption bands, allowing for highly selective photoconversion. The (Z)-isomer of TphAB adopts an unusual orthogonal geometry where the thiophenyl group is perfectly perpendicular to the phenyl group. This geometry is stabilized by a rare lone-pair⋅⋅⋅π interaction between the S atom and the phenyl group. The photoisomerization of TphAB occurs on the sub-ps to ps timescale and is governed by this interaction. Therefore, the adoption and disruption of the orthogonal geometry requires significant movement along the inversion reaction coordinates (CNN and NNC angles). Our results establish TphAB as an excellent photoswitch with versatile properties that expand the application possibilities of AB derivatives.

14.
Angew Chem Int Ed Engl ; 59(36): 15590-15594, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32433814

RESUMO

Photochromic systems with an ultrahigh rate of thermal relaxation are highly desirable for the development of new efficient photochromic oscillators. Based on DFT calculations, we designed a series of 5-phenylazopyrimidines with strong push-pull character in silico and observed very low energy barriers for the thermal (Z)-to-(E) isomerization. The structure of the (Z)-isomer of the slowest isomerizing derivative in the series was confirmed by NMR analysis with in situ irradiation at low temperature. The substituents can tune the lifetime of thermal back isomerization from hundreds of microseconds to several nanoseconds (8 orders of magnitude). The photoswitching parameters were extracted from transient absorption techniques and a dominant rotation mechanism of the (Z)-to-(E) thermal fading was proposed based on DFT calculations.

16.
Photochem Photobiol Sci ; 17(1): 81-88, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29218340

RESUMO

Deinococcus radiodurans is well known for its unusual resistance to different environmental stresses. Recently, we have described a novel complex composed of the surface (S)-layer protein DR_2577 and the carotenoid deinoxanthin. We also showed a role of this complex in the UV resistance under desiccation. Both these properties, UV and desiccation resistance, suggest a selective pressure generated by Sun irradiation. In order to confirm this hypothesis we checked whether this S-layer Deinoxanthin Binding Complex (SDBC) has features of thermo-resistance, a property also expected in proteins evolved under solar irradiative pressure. We performed the spectroscopic characterization of the SDBC by means of thermal shift assay, circular dichroism and related in silico analysis. Our findings identify a stability typical of thermo-adapted proteins and provide a new insight into the origin of specific S-layer types. The results are discussed in terms of co-evolutionary mechanisms related to Sun-induced desiccation and heat.

17.
Biochim Biophys Acta ; 1857(6): 840-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26869375

RESUMO

The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI). There, the inherently higher stability of PSI and high quenching efficiency of P(700)(+) allow dumping of PSII excess excitation energy into heat, resulting in almost complete cessation of photosynthetic electron transport (PET). This potentially reversible "super-quenching" mechanism protects the PSA against destruction at the cost of a loss of photosynthetic activity. We suggest that the inhibition of PET and the consequent inhibition of organic carbon production (e.g. sugars) in the symbiotic Symbiodinium provide a trigger for the symbiont expulsion, i.e. bleaching.


Assuntos
Antozoários/parasitologia , Dinoflagellida/fisiologia , Estresse Fisiológico/fisiologia , Simbiose/fisiologia , Temperatura , Animais , Clorofila/metabolismo , Dinoflagellida/metabolismo , Dinoflagellida/ultraestrutura , Transporte de Elétrons/efeitos da radiação , Cinética , Luz , Medições Luminescentes/métodos , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Oxirredução/efeitos da radiação , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Fatores de Tempo
18.
Br J Cancer ; 117(5): 734-743, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28765617

RESUMO

BACKGROUND: Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a possible role for its association with the risk of aggressive prostate cancer. METHODS: We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases and 6016 controls and a subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects and their possible interactions. RESULTS: The results suggest that height is associated with high-grade prostate cancer risk. Men with height >180 cm are at a 22% increased risk as compared to men with height <173 cm (OR 1.22, 95% CI 1.01-1.48). Genetic variants in the growth pathway gene showed an association with prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased risk of overall prostate cancer and high-grade prostate cancer by 13% and 15%, respectively, in the highest score group as compared to lowest score group. CONCLUSIONS: There was no evidence of gene-environment interaction between height and the selected candidate SNPs.Our findings suggest a role of height in high-grade prostate cancer. The effect of genetic variants in the genes related to growth is seen in all cases and high-grade prostate cancer. There is no interaction between these two exposures.


Assuntos
Estatura/genética , Neoplasias da Próstata/genética , Idoso , Estudos de Casos e Controles , Interação Gene-Ambiente , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/patologia , Medição de Risco
19.
Chemphyschem ; 18(16): 2137-2141, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28586535

RESUMO

Azobenzenes are widely utilized as molecular photoswitches for control of nanoscale processes. Their photoisomerization reaction is highly robust and is retained even in extremely rigid systems. Currently, it is not clear what geometric restrictions are required to block this isomerization successfully. We present here a combined experimental and theoretical study on the ultrafast dynamics of cyclotrisazobenzene (CTA) and demonstrate that the structural constraints in CTA prevent isomerization of the photoswitch units. In the developed molecular picture, the N=N bonds respond elastically to the motion along the isomerization coordinates, which leads to ultrafast and complete dissipation of the UV excitation as heat. Based on this property, CTA and possibly other similarly designed molecules can be utilized as UV absorbers, for example in sunscreens; other potential applications are also envisioned.


Assuntos
Compostos Azo/química , Teoria Quântica , Raios Ultravioleta , Estrutura Molecular
20.
Angew Chem Int Ed Engl ; 56(40): 12092-12096, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28569441

RESUMO

The photoswitchable piperidine general base catalyst is a prototype structure for light control of catalysis. Its azobenzene moiety moves sterically shielding groups to either protect or expose the active site, thereby changing the basicity and hydrogen-bonding affinity of the compound. The reversible switching dynamics of the catalyst is probed in the infrared spectral range by monitoring hydrogen bond (HB) formation between its active site and methanol (MeOH) as HB donor. Steady-state infrared (IR) and ultrafast IR and UV/Vis spectroscopies are used to uncover ultrafast expulsion of MeOH from the active site within a few picoseconds. Thus, the force generated by the azobenzene moiety even in the final phase of its isomerization is sufficient to break a strong HB within 3 ps and to shut down access to the active site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA