Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(2)2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216572

RESUMO

The recombinant bacterial surface layer (S-layer) protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i) adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii) the recrystallization process is triggered-after washing away the unbound S-layer protein-by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating) with tailor-made biological sensing layers.


Assuntos
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Adsorção , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes , Propriedades de Superfície
2.
Int J Mol Sci ; 16(2): 2824-38, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25633104

RESUMO

The most important aspect of synthetic lipid membrane architectures is their ability to study functional membrane-active peptides and membrane proteins in an environment close to nature. Here, we report on the generation and performance of a biomimetic platform, the S-layer supported lipid membrane (SsLM), to investigate the structural and electrical characteristics of the membrane-active peptide gramicidin and the transmembrane protein α-hemolysin in real-time using a quartz crystal microbalance with dissipation monitoring in combination with electrochemical impedance spectroscopy. A shift in membrane resistance is caused by the interaction of α-hemolysin and gramicidin with SsLMs, even if only an attachment onto, or functional channels through the lipid membrane, respectively, are formed. Moreover, the obtained results did not indicate the formation of functional α-hemolysin pores, but evidence for functional incorporation of gramicidin into this biomimetic architecture is provided.


Assuntos
Biomimética , Peptídeos/metabolismo , Lipossomas Unilamelares/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espectroscopia Dielétrica , Gramicidina/química , Gramicidina/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Peptídeos/química , Técnicas de Microbalança de Cristal de Quartzo , Lipossomas Unilamelares/química
3.
Analyst ; 139(13): 3296-304, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24706068

RESUMO

We present a rapid and robust technique for the sampling of membrane-associated proteins from the surface of a single, live cell and their subsequent deposition onto a solid-supported lipid bilayer. As a proof of principle, this method has been used to extract green fluorescent protein (EGFP) labelled K-ras proteins located at the inner leaflet of the plasma membrane of colon carcinoma cells and to transfer them to an S-layer supported lipid bilayer system. The technique is non-destructive, meaning that both the cell and proteins are intact after the sampling operation, offering the potential for repeated measurements of the same cell of interest. This system provides the ideal tool for the investigation of cellular heterogeneity, as well as a platform for the investigation of rare cell types such as circulating tumour cells.


Assuntos
Membrana Celular/química , Proteínas de Membrana/isolamento & purificação , Análise de Célula Única/instrumentação , Linhagem Celular Tumoral , Neoplasias do Colo/química , Proteínas de Fluorescência Verde/isolamento & purificação , Humanos , Proteínas ras/isolamento & purificação
4.
Nanotechnology ; 25(31): 312001, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25030207

RESUMO

Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.


Assuntos
Parede Celular/química , Glicoproteínas de Membrana/química , Archaea/ultraestrutura , Proteínas Arqueais/química , Bactérias/ultraestrutura , Proteínas de Bactérias/química , Biomimética , Biotecnologia , Lipossomos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestrutura , Nanocápsulas , Nanopartículas , Nanotecnologia , Proteínas Recombinantes/química
5.
Small ; 9(17): 2895-904, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23606662

RESUMO

The present study introduces a novel nanocarrier system comprising lipidic emulsomes and S-layer (fusion) proteins as functionalizing tools coating the surface. Emulsomes composed of a solid tripalmitin core and a phospholipid shell are created reproducibly with an average diameter of approximately 300 nm using temperature-controlled extrusion steps. Both wildtype (wt) and recombinant (r) S-layer protein SbsB of Geobacillus stearothermophilus PV72/p2 are capable of forming coherent crystalline envelope structures with oblique (p1) lattice symmetry, as evidenced by transmission electron microscopy. Upon coating with wtSbsB, positive charge of emulsomes shifts to a highly negative zeta potential, whereas those coated with rSbsB become charge neutral. This observation is attributed to the presence of a negatively charged glycan, the secondary cell wall polymer (SCWP), which is associated only with wtSbsB. The present study shows for the first time the ability of recombinant and wildtype S-layer proteins to cover the entire surface of emulsomes with its characteristic crystalline lattice. Furthermore, in vitro cell culture studies reveal that S-layer coated emulsomes can be uptaken by human liver carcinoma cells (HepG2) without showing any significant cytotoxicity over a wide range of concentrations. The utilization of S-layer fusion proteins equipped in a nanopatterned fashion by identical or diverse functions may lead to further development of emulsomes in nanomedicine, especially for drug delivery and targeting.

6.
Small ; 9(22): 3887-94, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-23757161

RESUMO

A promising new approach for the production of biocatalysts comprises the use of surface-layer (S-layer) lattices that present functional multimeric enzymes on their surface, thereby guaranteeing most accurate spatial distribution and orientation, as well as maximal effectiveness and stability of these enzymes. For proof of concept, a tetrameric and a trimeric extremozyme are chosen for the construction of S-layer/extremozyme fusion proteins. By using a flexible peptide linker, either one monomer of the tetrameric xylose isomerase XylA from the thermophilic Thermoanaerobacterium strain JW/SL-YS 489 or, in another approach, one monomer of the trimeric carbonic anhydrase from the methanogenic archaeon Methanosarcina thermophila are genetically linked to one monomer of the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177. After isolation and purification, the self-assembly properties of both S-layer fusion proteins as well as the specific activity of the fused enzymes are confirmed, thus indicating that the S-layer protein moiety does not influence the nature of the multimeric enzymes and vice versa. By recrystallization of the S-layer/extremozyme fusion proteins on solid supports, the active enzyme multimers are exposed on the surface of the square S-layer lattice with 13.1 nm spacing.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Proteínas de Bactérias/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Aldose-Cetose Isomerases/genética , Proteínas de Bactérias/genética , Catálise , Cristalização , Glicoproteínas de Membrana/genética , Proteínas Recombinantes de Fusão/genética
7.
Arch Microbiol ; 195(5): 323-37, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23443476

RESUMO

The S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 assembles into a square (p4) lattice structure and recognizes a pyruvylated secondary cell wall polymer (SCWP) as the proper anchoring structure to the rigid cell wall layer. Sequencing of 8,004 bp in the 5'-upstream region of the S-layer gene sbpA led to five ORFs-encoding proteins involved in cell wall metabolism. After cloning and heterologous expression of ORF1 and ORF5 in Escherichia coli, the recombinant autolysin rAbpA and the recombinant pyruvyl transferase rCsaB were isolated, purified, and correct folding was confirmed by circular dichroism. Although rAbpA encoded by ORF1 showed amidase activity, it could attack whole cells of Ly. sphaericus CCM 2177 only after complete extraction of the S-layer lattice. Despite the presence of three S-layer-homology motifs on the N-terminal part, rAbpA did not show detectable affinity to peptidoglycan-containing sacculi, nor to isolated SCWP. As the molecular mass of the autolysin lies above the molecular exclusion limit of the S-layer, AbpA is obviously trapped within the rigid cell wall layer by the isoporous protein lattice. Immunogold-labeling of ultrathin-sectioned whole cells of Ly. sphaericus CCM 2177 with a polyclonal rabbit antiserum raised against rCsaB encoded by ORF5, and cell fractionation experiments demonstrated that the pyruvyl transferase was located in the cytoplasm, but not associated with cell envelope components including the plasma membrane. In enzymatic assays, rCsaB clearly showed pyruvyl transferase activity. By using RT-PCR, specific transcripts for each ORF could be detected. Cotranscription could be confirmed for ORF2 and ORF3.


Assuntos
Bacillus/genética , Família Multigênica , N-Acetil-Muramil-L-Alanina Amidase/genética , Fases de Leitura Aberta , Transferases/genética , Bacillus/citologia , Bacillus/enzimologia , Bacillus/metabolismo , Parede Celular/química , Parede Celular/genética , Parede Celular/metabolismo , Escherichia coli/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Transferases/metabolismo
8.
J Nanobiotechnology ; 11: 37, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24314310

RESUMO

BACKGROUND: Curcumin is a polyphenolic compound isolated from the rhizomes of the plant Curcuma longa and shows intrinsic anti-cancer properties. Its medical use remains limited due to its extremely low water solubility and bioavailability. Addressing this problem, drug delivery systems accompanied by nanoparticle technology have emerged. The present study introduces a novel nanocarrier system, so-called CurcuEmulsomes, where curcumin is encapsulated inside the solid core of emulsomes. RESULTS: CurcuEmulsomes are spherical solid nanoparticles with an average size of 286 nm and a zeta potential of 37 mV. Encapsulation increases the bioavailability of curcumin by up to 10,000 fold corresponding to a concentration of 0.11 mg/mL. Uptaken by HepG2 human liver carcinoma cell line, CurcuEmulsomes show a significantly prolonged biological activity and demonstrated therapeutic efficacy comparable to free curcumin against HepG2 in vitro - with a delay in response, as assessed by cell viability, apoptosis and cell cycle studies. The delay is attributed to the solid character of the nanocarrier prolonging the release of curcumin inside the HepG2 cells. CONCLUSIONS: Incorporation of curcumin into emulsomes results in water-soluble and stable CurcuEmulsome nanoformulations. CurcuEmulsomes do not only successfully facilitate the delivery of curcumin into the cell in vitro, but also enable curcumin to reach its effective concentrations inside the cell. The enhanced solubility of curcumin and the promising in vitro efficacy of CurcuEmulsomes highlight the potential of the system for the delivery of lipophilic drugs. Moreover, high degree of compatibility, prolonged release profile and tailoring properties feature CurcuEmulsomes for further therapeutic applications in vivo.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Curcumina/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Transporte Biológico , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Composição de Medicamentos , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Tamanho da Partícula , Solubilidade , Triglicerídeos/química , Água/química
9.
Int J Mol Sci ; 14(2): 2484-501, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23354479

RESUMO

Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports.

10.
Sci Adv ; 9(29): eadf1402, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478177

RESUMO

Affinity-based biosensing can enable point-of-care diagnostics and continuous health monitoring, which commonly follows bottom-up approaches and is inherently constrained by bioprobes' intrinsic properties, batch-to-batch consistency, and stability in biofluids. We present a biomimetic top-down platform to circumvent such difficulties by combining a "dual-monolayer" biorecognition construct with graphene-based field-effect-transistor arrays. The construct adopts redesigned water-soluble membrane receptors as specific sensing units, positioned by two-dimensional crystalline S-layer proteins as dense antifouling linkers guiding their orientations. Hundreds of transistors provide statistical significance from transduced signals. System feasibility was demonstrated with rSbpA-ZZ/CXCR4QTY-Fc combination. Nature-like specific interactions were achieved toward CXCL12 ligand and HIV coat glycoprotein in physiologically relevant concentrations, without notable sensitivity loss in 100% human serum. The construct is regeneratable by acidic buffer, allowing device reuse and functional tuning. The modular and generalizable architecture behaves similarly to natural systems but gives electrical outputs, which enables fabrication of multiplex sensors with tailored receptor panels for designated diagnostic purposes.


Assuntos
Técnicas Biossensoriais , Grafite , Humanos , Grafite/química , Biomimética , Eletricidade , Técnicas Biossensoriais/métodos , Transistores Eletrônicos
11.
J Biol Chem ; 286(31): 27416-24, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690085

RESUMO

Surface layers (S-layers) represent an almost universal feature of archaeal cell envelopes and are probably the most abundant bacterial cell proteins. S-layers are monomolecular crystalline structures of single protein or glycoprotein monomers that completely cover the cell surface during all stages of the cell growth cycle, thereby performing their intrinsic function under a constant intra- and intermolecular mechanical stress. In gram-positive bacteria, the individual S-layer proteins are anchored by a specific binding mechanism to polysaccharides (secondary cell wall polymers) that are linked to the underlying peptidoglycan layer. In this work, atomic force microscopy-based single-molecule force spectroscopy and a polyprotein approach are used to study the individual mechanical unfolding pathways of an S-layer protein. We uncover complex unfolding pathways involving the consecutive unfolding of structural intermediates, where a mechanical stability of 87 pN is revealed. Different initial extensibilities allow the hypothesis that S-layer proteins adapt highly stable, mechanically resilient conformations that are not extensible under the presence of a pulling force. Interestingly, a change of the unfolding pathway is observed when individual S-layer proteins interact with secondary cell wall polymers, which is a direct signature of a conformational change induced by the ligand. Moreover, the mechanical stability increases up to 110 pN. This work demonstrates that single-molecule force spectroscopy offers a powerful tool to detect subtle changes in the structure of an individual protein upon binding of a ligand and constitutes the first conformational study of surface layer proteins at the single-molecule level.


Assuntos
Proteínas de Bactérias/química , Desnaturação Proteica , Análise Espectral/métodos , Sequência de Bases , Primers do DNA , Microscopia de Força Atômica
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 12): 1511-4, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23192035

RESUMO

The Gram-positive bacterium Geobacillus stearothermophilus ATCC 12980 is completely covered with a two-dimensional crystalline monolayer composed of the S-layer protein SbsC. In order to complete the structure of the full-length protein, additional soluble constructs containing the crucial domains for self-assembly have been successfully cloned, expressed and purified. Crystals obtained from three different recombinant constructs yielded diffraction to 3.4, 2.8 and 1.5 Šresolution. Native data have been collected.


Assuntos
Proteínas de Bactérias/química , Geobacillus stearothermophilus/metabolismo , Glicoproteínas de Membrana/química , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Cristalização , Cristalografia por Raios X , Glicoproteínas de Membrana/metabolismo , Estrutura Terciária de Proteína
13.
Nanomaterials (Basel) ; 12(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889727

RESUMO

The outermost component of cell envelopes of most bacteria and almost all archaea comprise a protein lattice, which is termed Surface (S-)layer. The S-layer lattice constitutes a highly porous structure with regularly arranged pores in the nm-range. Some archaea thrive in extreme milieus, thus producing highly stable S-layer protein lattices that aid in protecting the organisms. In the present study, fragments of the cell envelope from the hyperthermophilic acidophilic archaeon Saccharolobus solfataricus P2 (SSO) have been isolated by two different methods and characterized. The organization of the fragments and the molecular sieving properties have been elucidated by transmission electron microscopy and by determining the retention efficiency of proteins varying in size, respectively. The porosity of the archaeal S-layer fragments was determined to be 45%. S-layer fragments of SSO showed a retention efficiency of up to 100% for proteins having a molecular mass of ≥ 66 kDa. Moreover, the extraction costs for SSO fragments have been reduced by more than 80% compared to conventional methods, which makes the use of these archaeal S-layer material economically attractive.

14.
Microb Cell Fact ; 10: 6, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21310062

RESUMO

BACKGROUND: Genetic fusion of the major birch pollen allergen (Bet v1) to bacterial surface-(S)-layer proteins resulted in recombinant proteins exhibiting reduced allergenicity as well as immunomodulatory capacity. Thus, S-layer/allergen fusion proteins were considered as suitable carriers for new immunotherapeutical vaccines for treatment of Type I hypersensitivity. Up to now, endotoxin contamination of the fusion protein which occurred after isolation from the gram-negative expression host E. coli had to be removed by an expensive and time consuming procedure. In the present study, in order to achieve expression of pyrogen-free, recombinant S-layer/allergen fusion protein and to study the secretion of a protein capable to self-assemble, the S-layer/allergen fusion protein rSbpA/Bet v1 was produced in the gram-positive organism Bacillus subtilis 1012. RESULTS: The chimaeric gene encoding the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 as well as Bet v1 was cloned and expressed in B. subtilis 1012. For that purpose, the E. coli-B. subtilis shuttle vectors pHT01 for expression in the B. subtilis cytoplasm and pHT43 for secretion of the recombinant fusion protein into the culture medium were used. As shown by western blot analysis, immediately after induction of expression, B. subtilis 1012 was able to secret rSbpA/Bet v1 mediated by the signal peptide amyQ of Bacillus amyloliquefaciens. Electron microscopical investigation of the culture medium revealed that the secreted fusion protein was able to form self-assembly products in suspension but did not recrystallize on the surface of the B. subtilis cells. The specific binding mechanism between the N-terminus of the S-layer protein and a secondary cell wall polymer (SCWP), located in the peptidoglycan-containing sacculi of Ly. sphaericus CCM 2177, could be used for isolation and purification of the secreted fusion protein from the culture medium. Immune reactivity of rSbpA/Bet v1 could be demonstrated in immunoblotting experiments with Bet v1 specific IgE containing serum samples from patients suffering birch pollen allergy. CONCLUSIONS: The impact of this study can be seen in the usage of a gram-positive organism for the production of pyrogen-free self-assembling recombinant S-layer/allergen fusion protein with great relevance for the development of vaccines for immunotherapy of atopic allergy.


Assuntos
Alérgenos/genética , Antígenos de Plantas/genética , Bacillus subtilis/genética , Betula/imunologia , Proteínas Recombinantes de Fusão/biossíntese , Alérgenos/imunologia , Alérgenos/metabolismo , Antígenos de Plantas/biossíntese , Antígenos de Plantas/imunologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Humanos , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/prevenção & controle , Imunoglobulina E/imunologia , Imunoterapia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico
15.
Phys Chem Chem Phys ; 13(25): 11905-13, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21623450

RESUMO

Bacterial crystalline surface layers (S-layers) are the outermost envelope of prokaryotic organisms representing the simplest biological membranes developed during evolution. In this context, the bacterial protein SbpA has already shown its intrinsic ability to reassemble on different substrates forming protein crystals of square lattice symmetry. In this work, we present the interaction between the bacterial protein SbpA and five self-assembled monolayers carrying methyl (CH(3)), hydroxyl (OH), carboxylic acid (COOH) and mannose (C(6)H(12)O(6)) as functional groups. Protein adsorption and S-layer formation have been characterized by atomic force microscopy (AFM) while protein adsorption kinetics, mass uptake and the protein layer viscoelastic properties were investigated with quartz crystal microbalance with dissipation monitoring (QCM-D). The results indicate that the protein adsorption rate and crystalline domain area depend on surface chemistry and protein concentration. Furthermore, electrostatic interactions tune different protein rate adsorption and S-layer recrystallization pathways. Electrostatic interactions induce faster adsorption rate than hydrophobic or hydrophilic interactions. Finally, the shear modulus and the viscosity of the recrystallized S-layer on CH(3)C(6)S, CH(3)C(11)S and COOHC(11)S substrates were calculated from QCM-D measurements. Protein-protein interactions seem to play a main role in the mechanical stability of the formed protein (crystal) bilayer.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte de Monossacarídeos/química , Adsorção , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Cinética , Microscopia de Força Atômica , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
16.
J Chem Phys ; 134(12): 125103, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21456703

RESUMO

The molecular mechanisms guiding the self-assembly of proteins into functional or pathogenic large-scale structures can be only understood by studying the correlation between the structural details of the monomer and the eventual mesoscopic morphologies. Among the myriad structural details of protein monomers and their manifestations in the self-assembled morphologies, we seek to identify the most crucial set of structural features necessary for the spontaneous selection of desired morphologies. Using a combination of the structural information and a Monte Carlo method with a coarse-grained model, we have studied the functional protein self-assembly into S(surface)-layers, which constitute the crystallized outer most cell envelope of a great variety of bacterial cells. We discover that only few and mainly hydrophobic amino acids, located on the surface of the monomer, are responsible for the formation of a highly ordered anisotropic protein lattice. The coarse-grained model presented here reproduces accurately many experimentally observed features including the pore formation, chemical description of the pore structure, location of specific amino acid residues at the protein-protein interfaces, and surface accessibility of specific amino acid residues. In addition to elucidating the molecular mechanisms and explaining experimental findings in the S-layer assembly, the present work offers a tool, which is chemical enough to capture details of primary sequences and coarse-grained enough to explore morphological structures with thousands of protein monomers, to promulgate design rules for spontaneous formation of specific protein assemblies.


Assuntos
Geobacillus stearothermophilus/química , Glicoproteínas de Membrana/química , Modelos Moleculares , Método de Monte Carlo , Multimerização Proteica
17.
Membranes (Basel) ; 11(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918014

RESUMO

Monomolecular arrays of protein subunits forming surface layers (S-layers) are the most common outermost cell envelope components of prokaryotic organisms (bacteria and archaea). Since S-layers are periodic structures, they exhibit identical physicochemical properties for each constituent molecular unit down to the sub-nanometer level. Pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes. The functional groups on the surface and in the pores of the S-layer protein lattice are accessible for chemical modifications and for binding functional molecules in very precise fashion. S-layer ultrafiltration membranes (SUMs) can be produced by depositing S-layer fragments as a coherent (multi)layer on microfiltration membranes. After inter- and intramolecular crosslinking of the composite structure, the chemical and thermal resistance of these membranes was shown to be comparable to polyamide membranes. Chemical modification and/or specific binding of differently sized molecules allow the tuning of the surface properties and molecular sieving characteristics of SUMs. SUMs can be utilized as matrices for the controlled immobilization of functional biomolecules (e.g., ligands, enzymes, antibodies, and antigens) as required for many applications (e.g., biosensors, diagnostics, enzyme- and affinity-membranes). Finally, SUM represent unique supporting structures for stabilizing functional lipid membranes at meso- and macroscopic scale.

18.
Nanomaterials (Basel) ; 11(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065322

RESUMO

Homogeneous and stable dispersions of functionalized carbon nanotubes (CNTs) in aqueous solutions are imperative for a wide range of applications, especially in life and medical sciences. Various covalent and non-covalent approaches were published to separate the bundles into individual tubes. In this context, this work demonstrates the non-covalent modification and dispersion of pristine multi-walled carbon nanotubes (MWNTs) using two S-layer proteins, namely, SbpA from Lysinibacillus sphaericus CCM2177 and SbsB from Geobacillus stearothermophilus PV72/p2. Both the S-layer proteins coated the MWNTs completely. Furthermore, it was shown that SbpA can form caps at the ends of MWNTs. Reassembly experiments involving a mixture of both S-layer proteins in the same solution showed that the MWNTs were primarily coated with SbsB, whereas SbpA formed self-assembled layers. The dispersibility of the pristine nanotubes coated with SbpA was determined by zeta potential measurements (-24.4 +/- 0.6 mV, pH = 7). Finally, the SbpA-coated MWNTs were silicified with tetramethoxysilane (TMOS) using a mild biogenic approach. As expected, the thickness of the silica layer could be controlled by the reaction time and was 6.3 +/- 1.25 nm after 5 min and 25.0 +/- 5.9 nm after 15 min. Since S-layer proteins have already demonstrated their capability to bind (bio)molecules in dense packing or to act as catalytic sites in biomineralization processes, the successful coating of pristine MWNTs has great potential in the development of new materials, such as biosensor architectures.

19.
J Struct Biol ; 172(3): 276-83, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20650318

RESUMO

This work reports for the first time on the fabrication of a bi-functional S-layer tandem fusion protein which is able to self-assemble on solid supports without losing its functionality. Two variants of the green fluorescent protein (GFP) were genetically combined with a self-assembly system having the remarkable opportunity to interact with each other and act as functional nanopatterning biocoating. The S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a was fused with the cyan ECFP donor protein at the SgsE N-terminus and with the yellow YFP acceptor protein at the C-terminus. The fluorescence energy transfer was studied with spectrofluorimetry, confocal microscopy and flow cytometry, whilst protein self-assembly (on silicon dioxide particles) and structural investigations were carried out with atomic force microscopy (AFM). The fluorescence resonance energy transfer efficiency of reassembled SgsE tandem protein was 20.0 ± 6.1% which is almost the same transfer efficiency shown in solution (19.6 ± 0.1%). This work shows that bi-fluorescent S-layer fusion proteins self-assemble on silica particles retaining their fluorescent properties.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Glicoproteínas de Membrana/genética , Microscopia de Força Atômica , Microscopia Confocal , Espectrometria de Fluorescência
20.
Mol Microbiol ; 72(6): 1448-61, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19460092

RESUMO

The complete nucleotide sequence encoding the high-molecular-mass amylase (HMMA) of Geobacillus stearothermophilus ATCC 12980 was established by PCR techniques. Based on the hmma gene sequence, the full-length rHMMA, four N- or C-terminal rHMMA truncations as well as three C-terminal rHMMA fragments were cloned and heterologously expressed in Escherichia coli. Purified rHMMA forms were used either for affinity studies with the recombinant (r) S-layer protein SbsC (rSbsC), peptidoglycan-containing sacculi (PGS) and pure peptidoglycan (PG) devoid of the secondary cell wall polymer (SCWP), or for surface plasmon resonance (SPR) studies using rSbsC and isolated SCWP. In the C-terminal part of the HMMA, three specific binding regions, one for each cell wall component (rSbsC, SCWP and PG), could be identified. The functionality of the PG-binding domain could be confirmed by replacing the main part of the SCWP-binding domain of an S-layer protein by the PG-binding domain of the HMMA. The present work describes a completely new and highly economic strategy for cell adhesion of an exoenzyme.


Assuntos
Amilases/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Geobacillus stearothermophilus/enzimologia , Amilases/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Genes Bacterianos , Geobacillus stearothermophilus/genética , Peptidoglicano/metabolismo , Ligação Proteica , Alinhamento de Sequência , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA