Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 133(16): 1778-1788, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30602618

RESUMO

Filamin A (FLNa) links the cell membrane with the cytoskeleton and is central in several cellular processes. Heterozygous mutations in the X-linked FLNA gene are associated with a large spectrum of conditions, including macrothrombocytopenia, called filaminopathies. Using an isogenic pluripotent stem cell model derived from patients, we show that the absence of the FLNa protein in megakaryocytes (MKs) leads to their incomplete maturation, particularly the inability to produce proplatelets. Reduction in proplatelet formation potential is associated with a defect in actomyosin contractility, which results from inappropriate RhoA activation. This dysregulated RhoA activation was observed when MKs were plated on fibrinogen but not on other matrices (fibronectin, vitronectin, collagen 1, and von Willebrand factor), strongly suggesting a role for FLNa/αIIbß3 interaction in the downregulation of RhoA activity. This was confirmed by experiments based on the overexpression of FLNa mutants deleted in the αIIbß3-binding domain and the RhoA-interacting domain, respectively. Finally, pharmacological inhibition of the RhoA-associated kinase ROCK1/2 restored a normal phenotype and proplatelet formation. Overall, this work suggests a new etiology for macrothrombocytopenia, in which increased RhoA activity is associated with disrupted FLNa/αIIbß3 interaction.


Assuntos
Filaminas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombocitopenia/etiologia , Feminino , Fibrinogênio/metabolismo , Filaminas/genética , Humanos , Megacariócitos/química , Megacariócitos/patologia , Mutação , Ligação Proteica/fisiologia , Quinases Associadas a rho/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Haematologica ; 104(6): 1244-1255, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30545930

RESUMO

Germline RUNX1 mutations lead to thrombocytopenia and platelet dysfunction in familial platelet disorder with predisposition to acute myelogenous leukemia (AML). Multiple aspects of platelet function are impaired in these patients, associated with altered expression of genes regulated by RUNX1 We aimed to identify RUNX1-targets involved in platelet function by combining transcriptome analysis of patient and shRUNX1-transduced megakaryocytes (MK). Down-regulated genes included TREM-like transcript (TLT)-1 (TREML1) and the integrin subunit alpha (α)-2 (ITGA2) of collagen receptor α2-beta (ß)-1, which are involved in platelet aggregation and adhesion, respectively. RUNX1 binding to regions enriched for H3K27Ac marks was demonstrated for both genes using chromatin immunoprecipitation. Cloning of these regions upstream of the respective promoters in lentivirus allowing mCherry reporter expression showed that RUNX1 positively regulates TREML1 and ITGA2, and this regulation was abrogated after deletion of RUNX1 sites. TLT-1 content was reduced in patient MK and platelets. A blocking anti-TLT-1 antibody was able to block aggregation of normal but not patient platelets, whereas recombinant soluble TLT-1 potentiated fibrinogen binding to patient platelets, pointing to a role for TLT-1 deficiency in the platelet function defect. Low levels of α2 integrin subunit were demonstrated in patient platelets and MK, coupled with reduced platelet and MK adhesion to collagen, both under static and flow conditions. In conclusion, we show that gene expression profiling of RUNX1 knock-down or mutated MK provides a suitable approach to identify novel RUNX1 targets, among which downregulation of TREML1 and ITGA2 clearly contribute to the platelet phenotype of familial platelet disorder with predisposition to AML.


Assuntos
Transtornos Plaquetários/genética , Transtornos Plaquetários/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Integrina alfa2/genética , Leucemia Mieloide Aguda/etiologia , Receptores Imunológicos/genética , Transtornos Plaquetários/sangue , Plaquetas/metabolismo , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Megacariócitos/metabolismo , Mutação , Agregação Plaquetária , Testes de Função Plaquetária , Ligação Proteica
3.
Biochem J ; 441(3): 945-53, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22010850

RESUMO

Friedreich's ataxia is a hereditary neurodegenerative disease caused by reduced expression of mitochondrial frataxin. Frataxin deficiency causes impairment in respiratory capacity, disruption of iron homoeostasis and hypersensitivity to oxidants. Although the redox properties of NAD (NAD+ and NADH) are essential for energy metabolism, only few results are available concerning homoeostasis of these nucleotides in frataxin-deficient cells. In the present study, we show that the malate-aspartate NADH shuttle is impaired in Saccharomyces cerevisiae frataxin-deficient cells (Δyfh1) due to decreased activity of cytosolic and mitochondrial isoforms of malate dehydrogenase and to complete inactivation of the mitochondrial aspartate aminotransferase (Aat1). A considerable decrease in the amount of mitochondrial acetylated proteins was observed in the Δyfh1 mutant compared with wild-type. Aat1 is acetylated in wild-type mitochondria and deacetylated in Δyfh1 mitochondria suggesting that inactivation could be due to this post-translational modification. Mutants deficient in iron-sulfur cluster assembly or lacking mitochondrial DNA also showed decreased activity of Aat1, suggesting that Aat1 inactivation was a secondary phenotype in Δyfh1 cells. Interestingly, deletion of the AAT1 gene in a wild-type strain caused respiratory deficiency and disruption of iron homoeostasis without any sensitivity to oxidative stress. Our results show that secondary inactivation of Aat1 contributes to the amplification of the respiratory defect observed in Δyfh1 cells. Further implication of mitochondrial protein deacetylation in the physiology of frataxin-deficient cells is anticipated.


Assuntos
Aspartato Aminotransferase Mitocondrial/antagonistas & inibidores , Transporte de Elétrons/genética , Proteínas de Ligação ao Ferro/genética , Leveduras/metabolismo , Aspartato Aminotransferase Mitocondrial/metabolismo , Aspartato Aminotransferase Mitocondrial/fisiologia , DNA Mitocondrial/genética , Transporte de Elétrons/fisiologia , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/deficiência , Proteínas Ferro-Enxofre/genética , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Família Multigênica , Organismos Geneticamente Modificados , Estresse Oxidativo/fisiologia , Leveduras/enzimologia , Leveduras/genética , Frataxina
4.
Biochem Biophys Res Commun ; 418(2): 336-41, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22274609

RESUMO

Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin (Δyfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in Δyfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.


Assuntos
Proteínas de Ligação ao Ferro/genética , Mitocôndrias/fisiologia , Estresse Oxidativo , Saccharomyces cerevisiae/fisiologia , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , GTP Fosfo-Hidrolases/genética , Deleção de Genes , Humanos , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Frataxina
5.
Nat Commun ; 8(1): 1786, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29176689

RESUMO

Thrombocytopenia is a major side effect of a new class of anticancer agents that target histone deacetylase (HDAC). Their mechanism is poorly understood. Here, we show that HDAC6 inhibition and genetic knockdown lead to a strong decrease in human proplatelet formation (PPF). Unexpectedly, HDAC6 inhibition-induced tubulin hyperacetylation has no effect on PPF. The PPF decrease induced by HDAC6 inhibition is related to cortactin (CTTN) hyperacetylation associated with actin disorganization inducing important changes in the distribution of megakaryocyte (MK) organelles. CTTN silencing in human MKs phenocopies HDAC6 inactivation and knockdown leads to a strong PPF defect. This is rescued by forced expression of a deacetylated CTTN mimetic. Unexpectedly, unlike human-derived MKs, HDAC6 and CTTN are shown to be dispensable for mouse PPF in vitro and platelet production in vivo. Our results highlight an unexpected function of HDAC6-CTTN axis as a positive regulator of human but not mouse MK maturation.


Assuntos
Cortactina/metabolismo , Desacetilase 6 de Histona/metabolismo , Megacariócitos/metabolismo , Trombocitopenia/metabolismo , Acetilação/efeitos dos fármacos , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Cortactina/genética , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Megacariócitos/citologia , Camundongos Knockout , Pirimidinas/farmacologia , Interferência de RNA , Trombocitopenia/genética
6.
FEBS Lett ; 586(2): 143-8, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22155640

RESUMO

Friedreich ataxia is the most common recessive neurodegenerative disease and is caused by reduced expression of mitochondrial frataxin. Frataxin depletion causes impairment in iron-sulfur cluster and heme biosynthesis, disruption of iron homeostasis and hypersensitivity to oxidants. Currently no pharmacological treatment blocks disease progression, although antioxidant therapies proved to benefit patients. We show that sensitivity of yeast frataxin-deficient cells to hydrogen peroxide is partially mediated by the metacaspase. Metacaspase deletion in frataxin-deficient cells results in recovery of antioxidant capacity and heme synthesis. In addition, our results suggest that metacaspase is associated with mitochondrial respiration, intracellular redox control and genomic stability.


Assuntos
Caspases/genética , Proteínas de Ligação ao Ferro/genética , Estresse Oxidativo/genética , Saccharomyces cerevisiae/genética , Caspases/metabolismo , Caspases/fisiologia , Respiração Celular/genética , Relação Dose-Resposta a Droga , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Instabilidade Genômica/genética , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Proteínas de Ligação ao Ferro/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Organismos Geneticamente Modificados , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Leveduras/enzimologia , Leveduras/genética , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo , Frataxina
7.
Antioxid Redox Signal ; 13(5): 651-90, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20156111

RESUMO

Mitochondrial dysfunction and oxidative damage are at the origin of numerous neurodegenerative diseases like Friedreich ataxia and Alzheimer and Parkinson diseases. Friedreich ataxia (FRDA) is the most common hereditary ataxia, with one individual affected in 50,000. This disease is characterized by progressive degeneration of the central and peripheral nervous systems, cardiomyopathy, and increased incidence of diabetes mellitus. FRDA is caused by a dynamic mutation, a GAA trinucleotide repeat expansion, in the first intron of the FXN gene. Fewer than 5% of the patients are heterozygous and carry point mutations in the other allele. The molecular consequences of the GAA triplet expansion is transcription silencing and reduced expression of the encoded mitochondrial protein, frataxin. The precise cellular role of frataxin is not known; however, it is clear now that several mitochondrial functions are not performed correctly in patient cells. The affected functions include respiration, iron-sulfur cluster assembly, iron homeostasis, and maintenance of the redox status. This review highlights the molecular mechanisms that underlie the disease phenotypes and the different hypothesis about the function of frataxin. In addition, we present an overview of the most recent therapeutic approaches for this severe disease that actually has no efficient treatment.


Assuntos
Ataxia de Friedreich/tratamento farmacológico , Ataxia de Friedreich/metabolismo , Animais , Ataxia de Friedreich/genética , Ataxia de Friedreich/fisiopatologia , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/fisiologia , Modelos Biológicos , Oxirredução , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA