Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30392959

RESUMO

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Assuntos
Adenina/análogos & derivados , Neoplasias Encefálicas/patologia , Metilação de DNA , Glioblastoma/patologia , Adenina/análise , Adenina/química , Adulto , Idoso , Homólogo AlkB 1 da Histona H2a Dioxigenase/antagonistas & inibidores , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Hipóxia Celular , Criança , Epigenômica , Feminino , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo
2.
Cell ; 153(1): 139-52, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23540695

RESUMO

Glioblastomas (GBMs) are highly vascular and lethal brain tumors that display cellular hierarchies containing self-renewing tumorigenic glioma stem cells (GSCs). Because GSCs often reside in perivascular niches and may undergo mesenchymal differentiation, we interrogated GSC potential to generate vascular pericytes. Here, we show that GSCs give rise to pericytes to support vessel function and tumor growth. In vivo cell lineage tracing with constitutive and lineage-specific fluorescent reporters demonstrated that GSCs generate the majority of vascular pericytes. Selective elimination of GSC-derived pericytes disrupts the neovasculature and potently inhibits tumor growth. Analysis of human GBM specimens showed that most pericytes are derived from neoplastic cells. GSCs are recruited toward endothelial cells via the SDF-1/CXCR4 axis and are induced to become pericytes predominantly by transforming growth factor ß. Thus, GSCs contribute to vascular pericytes that may actively remodel perivascular niches. Therapeutic targeting of GSC-derived pericytes may effectively block tumor progression and improve antiangiogenic therapy.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Pericitos/patologia , Animais , Encéfalo/patologia , Neoplasias Encefálicas/irrigação sanguínea , Diferenciação Celular , Células Endoteliais/patologia , Glioblastoma/irrigação sanguínea , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Fator de Crescimento Transformador beta/metabolismo , Transplante Heterólogo
3.
Cell ; 146(1): 53-66, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729780

RESUMO

Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.


Assuntos
Proliferação de Células , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Autoantígenos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Óxido Nítrico/metabolismo , Células Tumorais Cultivadas
4.
J Neurooncol ; 168(1): 111-123, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38563855

RESUMO

PURPOSE: Glioblastoma (GB) is the most common primary malignant brain tumor with the highest incidence occurring in older adults with a median age at diagnosis of 64 years old. While treatment often improves survival it brings toxicities and adverse events (AE). Here we identify sex differences in treatment patterns and AE in individuals ≥ 66 years at diagnosis with GB. METHODS: Using the SEER-Medicare dataset sex differences in adverse events were assessed using multivariable logistic regression performed to calculate the male/female odds ratio (M/F OR) and 95% confidence intervals [95% CI] of experiencing an AE adjusted for demographic variables and Elixhauser comorbidity score. RESULTS: Males with GB were more likely to receive standard of care (SOC; Surgery with concurrent radio-chemotherapy) [20%] compared to females [17%], whereas females were more likely to receive no treatment [26%] compared to males [21%]. Females with GB receiving SOC were more likely to develop gastrointestinal disorders (M/F OR = 0.76; 95% CI,0.64-0.91, p = 0.002) or blood and lymphatic system disorders (M/F OR = 0.79; 95% CI,0.66-0.95, p = 0.012). Males with GB receiving SOC were more likely to develop cardiac disorders (M/F OR = 1.21; 95% CI,1.02-1.44, p = 0.029) and renal disorders (M/F OR = 1.65; 95% CI,1.37-2.01, p < 0.001). CONCLUSIONS: Sex differences for individuals, 66 years and older, diagnosed with GB exist in treatment received and adverse events developed across different treatment modalities.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Medicare , Humanos , Masculino , Feminino , Idoso , Estados Unidos/epidemiologia , Glioblastoma/terapia , Glioblastoma/epidemiologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/epidemiologia , Idoso de 80 Anos ou mais , Caracteres Sexuais , Fatores Sexuais , Programa de SEER , Terapia Combinada/efeitos adversos
5.
J Neurooncol ; 161(1): 33-43, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36581779

RESUMO

PURPOSE: Gliomagenesis and resistance of glioblastoma (GBM) are believed to be mediated by glioma stem cells (GSC). Evidence suggests that SHH signaling promotes GSC proliferation and self-renewal. METHODS: ABTC-0904 was a two-arm, multicenter phase 0/II study of GDC-0449, an oral inhibitor of Smoothened (SMO) in patients undergoing resection for recurrent GBM. All patients (Arms I and II) had surgery and received drug post-operatively. Only patients in Arm I received drug prior to surgery. The primary objective was to determine 6-month progression free survival (PFS-6). Secondary endpoints include median PFS (mPFS) and overall survival (mOS), response rate, and toxicity. Correlative studies included bioanalysis of GDC-0449, and inhibition of SHH signaling, GSC proliferation and self-renewal. RESULTS: Forty-one patients were enrolled. Pharmacokinetics of GDC-0449 in plasma demonstrated levels within expected therapeutic range in 75% of patients. The proportion of tumorcells producing CD133+ neurospheres, neurosphere proliferation, self-renewal, and expression of the SHh downstream signaling was significantly decreased in Arm I following GDC-0449 treatment (p < 0.005; p < 0.001 respectively) compared to Arm II (no drug pre-op). Treatment was well tolerated. There were no objective responders in either arm. Overall PFS-6 was 2.4% (95% CI 0.9-11.1%). Median PFS was 2.3 months (95% CI 1.9-2.6) and mOS was 7.8 months (95% CI 5.4-10.1). CONCLUSIONS: GDC-0449 was well tolerated, reached tumor, and inhibited CD133+ neurosphere formation, but had little clinical efficacy as a single agent in rGBM. This suggests growth and maintenance of rGBM is not solely dependent on the SHH pathway thus targeting SMO may require combined approaches.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Proteínas Hedgehog/metabolismo , Recidiva Local de Neoplasia/patologia , Glioma/patologia , Antineoplásicos/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Encefálicas/patologia
6.
Eur Radiol ; 33(2): 836-844, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35999374

RESUMO

OBJECTIVES: To test the feasibility of using 3D MRF maps with radiomics analysis and machine learning in the characterization of adult brain intra-axial neoplasms. METHODS: 3D MRF acquisition was performed on 78 patients with newly diagnosed brain tumors including 33 glioblastomas (grade IV), 6 grade III gliomas, 12 grade II gliomas, and 27 patients with brain metastases. Regions of enhancing tumor, non-enhancing tumor, and peritumoral edema were segmented and radiomics analysis with gray-level co-occurrence matrices and gray-level run-length matrices was performed. Statistical analysis was performed to identify features capable of differentiating tumors based on type, grade, and isocitrate dehydrogenase (IDH1) status. Receiver operating curve analysis was performed and the area under the curve (AUC) was calculated for tumor classification and grading. For gliomas, Kaplan-Meier analysis for overall survival was performed using MRF T1 features from enhancing tumor region. RESULTS: Multiple MRF T1 and T2 features from enhancing tumor region were capable of differentiating glioblastomas from brain metastases. Although no differences were identified between grade 2 and grade 3 gliomas, differentiation between grade 2 and grade 4 gliomas as well as between grade 3 and grade 4 gliomas was achieved. MRF radiomics features were also able to differentiate IDH1 mutant from the wild-type gliomas. Radiomics T1 features for enhancing tumor region in gliomas correlated to overall survival (p < 0.05). CONCLUSION: Radiomics analysis of 3D MRF maps allows differentiating glioblastomas from metastases and is capable of differentiating glioblastomas from metastases and characterizing gliomas based on grade, IDH1 status, and survival. KEY POINTS: • 3D MRF data analysis using radiomics offers novel tissue characterization of brain tumors. • 3D MRF with radiomics offers glioma characterization based on grade, IDH1 status, and overall patient survival.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Estudos de Viabilidade , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/patologia , Glioma/patologia , Espectroscopia de Ressonância Magnética , Isocitrato Desidrogenase/genética , Mutação , Gradação de Tumores
7.
Neuroradiology ; 65(9): 1343-1352, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468750

RESUMO

PURPOSE: While the T2-FLAIR mismatch sign is highly specific for isocitrate dehydrogenase (IDH)-mutant, 1p/19q-noncodeleted astrocytomas among lower-grade gliomas, its utility in WHO grade 4 gliomas is not well-studied. We derived the partial T2-FLAIR mismatch sign as an imaging biomarker for IDH mutation in WHO grade 4 gliomas. METHODS: Preoperative MRI scans of adult WHO grade 4 glioma patients (n = 2165) from the multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium were analyzed. Diagnostic performance of the partial T2-FLAIR mismatch sign was evaluated. Subset analyses were performed to assess associations of imaging markers with overall survival (OS). RESULTS: One hundred twenty-one (5.6%) of 2165 grade 4 gliomas were IDH-mutant. Partial T2-FLAIR mismatch was present in 40 (1.8%) cases, 32 of which were IDH-mutant, yielding 26.4% sensitivity, 99.6% specificity, 80.0% positive predictive value, and 95.8% negative predictive value. Multivariate logistic regression demonstrated IDH mutation was significantly associated with partial T2-FLAIR mismatch (odds ratio [OR] 5.715, 95% CI [1.896, 17.221], p = 0.002), younger age (OR 0.911 [0.895, 0.927], p < 0.001), tumor centered in frontal lobe (OR 3.842, [2.361, 6.251], p < 0.001), absence of multicentricity (OR 0.173, [0.049, 0.612], p = 0.007), and presence of cystic (OR 6.596, [3.023, 14.391], p < 0.001) or non-enhancing solid components (OR 6.069, [3.371, 10.928], p < 0.001). Multivariate Cox analysis demonstrated cystic components (p = 0.024) and non-enhancing solid components (p = 0.003) were associated with longer OS, while older age (p < 0.001), frontal lobe center (p = 0.008), multifocality (p < 0.001), and multicentricity (p < 0.001) were associated with shorter OS. CONCLUSION: Partial T2-FLAIR mismatch sign is highly specific for IDH mutation in WHO grade 4 gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/genética , Imageamento por Ressonância Magnética/métodos , Mutação , Organização Mundial da Saúde
8.
J Neurooncol ; 156(1): 81-96, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825292

RESUMO

INTRODUCTION: Glioblastoma multiforme (GBM) constitutes one of the deadliest tumors to afflict humans, although it is still considered an orphan disease. Despite testing multiple new and innovative therapies in ongoing clinical trials, the median survival for this type of malignancy is less than two years after initial diagnosis, regardless of therapy. One class of promising new therapies are chimeric antigen receptor T cells or CAR-T which have been shown to be very effective at treating refractory liquid tumors such as B-cell malignancies. However, CAR-T effectivity against solid tumors such as GBM has been limited thus far. METHODS: A Pubmed, Google Scholar, Directory of Open Access Journals, and Web of Science literature search using the terms chimeric antigen receptor or CAR-T, GBM, solid tumor immunotherapy, immunotherapy, and CAR-T combination was performed for publication dates between January 1987 and November 2021. RESULTS: In the current review, we present a comprehensive list of CAR-T cells developed to treat GBM, we describe new possible T-cell engineering strategies against GBM while presenting a short introductory history to the reader regarding the origin(s) of this cutting-edge therapy. We have also compiled a unique list of anti-GBM CAR-Ts with their specific protein sequences and their functions as well as an inventory of clinical trials involving CAR-T and GBM. CONCLUSIONS: The aim of this review is to introduce the reader to the field of T-cell engineering using CAR-Ts to treat GBM and describe the obstacles that may need to be addressed in order to significantly delay the relentless growth of GBM.


Assuntos
Neoplasias Encefálicas , Terapia Baseada em Transplante de Células e Tecidos , Glioblastoma , Receptores de Antígenos Quiméricos , Neoplasias Encefálicas/terapia , Terapia Baseada em Transplante de Células e Tecidos/tendências , Previsões , Glioblastoma/terapia , Humanos , Receptores de Antígenos Quiméricos/uso terapêutico
9.
Neurosurg Focus ; 53(5): E9, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321293

RESUMO

OBJECTIVE: Stereotactic radiosurgery (SRS) has recently emerged as a minimally invasive alternative to resection for treating multiple brain metastases. Given the lack of consensus regarding the application of SRS versus resection for multiple brain metastases, the authors aimed to conduct a systematic literature review of all published work on the topic. METHODS: The PubMed, OVID, Cochrane, Web of Science, and Scopus databases were used to identify studies that examined clinical outcomes after resection or SRS was performed in patients with multiple brain metastases. Radiological studies, case series with fewer than 3 patients, pediatric studies, or national database studies were excluded. Data extracted included patient demographics and mean overall survival (OS). Weighted t-tests and ANOVA were performed. RESULTS: A total of 1300 abstracts were screened, 450 articles underwent full-text review, and 129 studies met inclusion criteria, encompassing 20,177 patients (18,852 treated with SRS and 1325 who underwent resection). The OS for the SRS group was 10.2 ± 6 months, and for the resection group it was 6.5 ± 3.8 months. A weighted ANOVA test comparing OS with covariates of age, sex, and publication year revealed that the treatment group (p = 0.045), age (p = 0.034), and publication year (0.0078) were all independently associated with OS (with SRS, younger age, and later publication year being associated with longer survival), whereas sex (p = 0.95) was not. CONCLUSIONS: For patients with multiple brain metastases, SRS and resection are effective treatments to prolong OS, with published data suggesting that SRS may have a trend toward lengthened survival outcomes. The authors encourage additional work examining outcomes of treatments for multiple brain metastases.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Criança , Estudos Retrospectivos , Neoplasias Encefálicas/cirurgia , Irradiação Craniana , Resultado do Tratamento
10.
Eur J Nucl Med Mol Imaging ; 48(3): 683-693, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32979059

RESUMO

PURPOSE: This is a radiomics study investigating the ability of texture analysis of MRF maps to improve differentiation between intra-axial adult brain tumors and to predict survival in the glioblastoma cohort. METHODS: Magnetic resonance fingerprinting (MRF) acquisition was performed on 31 patients across 3 groups: 17 glioblastomas, 6 low-grade gliomas, and 8 metastases. Using regions of interest for the solid tumor and peritumoral white matter on T1 and T2 maps, second-order texture features were calculated from gray-level co-occurrence matrices and gray-level run length matrices. Selected features were compared across the three tumor groups using Wilcoxon rank-sum test. Receiver operating characteristic curve analysis was performed for each feature. Kaplan-Meier method was used for survival analysis with log rank tests. RESULTS: Low-grade gliomas and glioblastomas had significantly higher run percentage, run entropy, and information measure of correlation 1 on T1 than metastases (p < 0.017). The best separation of all three tumor types was seen utilizing inverse difference normalized and homogeneity values for peritumoral white matter in both T1 and T2 maps (p < 0.017). In solid tumor T2 maps, lower values in entropy and higher values of maximum probability and high-gray run emphasis were associated with longer survival in glioblastoma patients (p < 0.05). Several texture features were associated with longer survival in glioblastoma patients on peritumoral white matter T1 maps (p < 0.05). CONCLUSION: Texture analysis of MRF-derived maps can improve our ability to differentiate common adult brain tumors by characterizing tumor heterogeneity, and may have a role in predicting outcomes in patients with glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
11.
J Neurooncol ; 151(3): 429-442, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33611709

RESUMO

INTRODUCTION: Laser Interstitial Thermotherapy (LITT; also known as Stereotactic Laser Ablation or SLA), is a minimally invasive treatment modality that has recently gained prominence in the treatment of malignant primary and metastatic brain tumors and radiation necrosis and studies for treatment of spinal metastasis has recently been reported. METHODS: Here we provide a brief literature review of the various contemporary uses for LITT and their reported outcomes. RESULTS: Historically, the primary indication for LITT has been for the treatment of recurrent glioblastoma (GBM). However, indications have continued to expand and now include gliomas of different grades, brain metastasis (BM), radiation necrosis (RN), other types of brain tumors as well as spine metastasis. LITT is emerging as a safe, reliable, minimally invasive clinical approach, particularly for deep seated, focal malignant brain tumors and radiation necrosis. The role of LITT for treatment of other types of tumors of the brain and for spine tumors appears to be evolving at a small number of centers. While the technology appears to be safe and increasingly utilized, there have been few prospective clinical trials and most published studies combine different pathologies in the same report. CONCLUSION: Well-designed prospective trials will be required to firmly establish the role of LITT in the treatment of lesions of the brain and spine.


Assuntos
Neoplasias Encefálicas/terapia , Hipertermia Induzida/métodos , Terapia a Laser/métodos , Procedimentos Neurocirúrgicos/métodos , Neoplasias da Coluna Vertebral/terapia , Ensaios Clínicos como Assunto , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos
12.
J Neurooncol ; 155(3): 363-372, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34761331

RESUMO

BACKGROUND/PURPOSE: Glioblastoma (GBM) is the most common primary malignant brain tumor. Sex has been shown to be an important prognostic factor for GBM. The purpose of this study was to develop and independently validate sex-specific nomograms for estimation of individualized GBM survival probabilities using data from 2 independent NRG Oncology clinical trials. METHODS: This analysis included information on 752 (NRG/RTOG 0525) and 599 (NRG/RTOG 0825) patients with newly diagnosed GBM. The Cox proportional hazard models by sex were developed using NRG/RTOG 0525 and significant variables were identified using a backward selection procedure. The final selected models by sex were then independently validated using NRG/RTOG 0825. RESULTS: Final nomograms were built by sex. Age at diagnosis, KPS, MGMT promoter methylation and location of tumor were common significant predictors of survival for both sexes. For both sexes, tumors in the frontal lobes had significantly better survival than tumors of multiple sites. Extent of resection, and use of corticosteroids were significant predictors of survival for males. CONCLUSIONS: A sex specific nomogram that assesses individualized survival probabilities (6-, 12- and 24-months) for patients with GBM could be more useful than estimation of overall survival as there are factors that differ between males and females. A user friendly online application can be found here- https://npatilshinyappcalculator.shinyapps.io/SexDifferencesInGBM/ .


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Feminino , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Masculino , Nomogramas , Prognóstico , Regiões Promotoras Genéticas , Modelos de Riscos Proporcionais
13.
Curr Treat Options Oncol ; 22(7): 57, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34097171

RESUMO

OPINION STATEMENT: Intracranial stereotactic radiosurgery (SRS) is an effective and convenient treatment for many brain conditions. Data regarding safety come mostly from retrospective single institutional studies and a small number of prospective studies. Variations in target delineation, treatment delivery, imaging follow-up protocols and dose prescription limit the interpretation of this data. There has been much clinical focus on radiation necrosis (RN) in particular, as it is being increasingly recognized on follow-up imaging. Symptomatic RN may be treated with medical therapy (such as corticosteroids and bevacizumab) with surgical resection being reserved for refractory patients. Nevertheless, RN remains a challenging condition to manage, and therefore upfront patient selection for SRS remains critical to provide complication-free control. Mitigation strategies need to be considered in situations where the baseline risk of RN is expected to be high-such as large target volume or re-irradiation. These may involve reduction in the prescribed dose or hypofractionated stereotactic radiation therapy (HSRT). Recently published guidelines and international meta-analysis report the benefit of HSRT in larger lesions, without compromising control rates. However, careful attention to planning parameters and SRS techniques still need to be adhered, even with HSRT. In cases where the risk is deemed to be high despite mitigation, a combination approach of surgery with or without post-operative radiation should be considered.


Assuntos
Neoplasias Encefálicas/radioterapia , Lesões por Radiação/prevenção & controle , Radiocirurgia/efeitos adversos , Neoplasias Encefálicas/patologia , Humanos , Necrose , Lesões por Radiação/diagnóstico , Lesões por Radiação/etiologia , Lesões por Radiação/terapia , Carga Tumoral
14.
Genes Dev ; 26(11): 1247-62, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22661233

RESUMO

Growth factor-mediated proliferation and self-renewal maintain tissue-specific stem cells and are frequently dysregulated in cancers. Platelet-derived growth factor (PDGF) ligands and receptors (PDGFRs) are commonly overexpressed in gliomas and initiate tumors, as proven in genetically engineered models. While PDGFRα alterations inform intertumoral heterogeneity toward a proneural glioblastoma (GBM) subtype, we interrogated the role of PDGFRs in intratumoral GBM heterogeneity. We found that PDGFRα is expressed only in a subset of GBMs, while PDGFRß is more commonly expressed in tumors but is preferentially expressed by self-renewing tumorigenic GBM stem cells (GSCs). Genetic or pharmacological targeting of PDGFRß (but not PDGFRα) attenuated GSC self-renewal, survival, tumor growth, and invasion. PDGFRß inhibition decreased activation of the cancer stem cell signaling node STAT3, while constitutively active STAT3 rescued the loss of GSC self-renewal caused by PDGFRß targeting. In silico survival analysis demonstrated that PDGFRB informed poor prognosis, while PDGFRA was a positive prognostic factor. Our results may explain mixed clinical responses of anti-PDGFR-based approaches and suggest the need for integration of models of cancer as an organ system into development of cancer therapies.


Assuntos
Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Humanos , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Fator de Transcrição STAT3/metabolismo , Transplante Heterólogo
15.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698368

RESUMO

Glioblastoma multiforme (GBM) is the most malignant primary brain cancer affecting adults. Therapeutic options for GBM have remained the same for over a decade with no significant improvement. Many therapies that are successful in culture have failed in patients, likely due to the complex microenvironment in the brain, which has yet to be reproduced in any culture model. Furthermore, the high passage number of cultured cells and clonal selection fail to recapitulate the molecular and genomic signatures of GBM. We have established orthotopic patient-derived xenografts (PDX) from 37 GBM patients with human GBM. Of the 69 patient samples analyzed, we were successful in passaging 37 lines three or more generations (53.6%). After phenotypic characterization of the xenografted tumor tissue, two different growth patterns emerged highly invasive or localized. The phenotype was dependent on malignancy and previous treatment of the patient from which the xenograft was derived. Physiologically, mice exhibited symptoms more quickly with each subsequent passage, particularly in the localized tumors. Study of these physiologically relevant human xenografts in mice will enable therapeutic screenings in a microenvironment that more closely resembles GBM and may allow development of individualized patient models which may eventually be used for simulating treatment.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Idoso , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Transplante de Neoplasias , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Pediatr Neurosurg ; 54(5): 310-318, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31416081

RESUMO

OBJECT: Magnetic resonance fingerprinting (MRF) allows rapid, simultaneous mapping of T1 and T2 relaxation times and may be an important diagnostic tool to measure tissue characteristics in pediatric brain tumors. We examined children and young adults with primary brain tumors to determine whether MRF can discriminate tumor from normal-appearing white matter and distinguish tumor grade. METHODS: MRF was performed in 23 patients (14 children and 9 young adults) with brain tumors (19 low-grade glioma, 4 high-grade tumors). T1 and T2 values were recorded in regions of solid tumor (ST), peritumoral white matter (PWM), and contralateral white matter (CWM). Nonparametric tests were used for comparison between groups and regions. RESULTS: Median scan time for MRF and a sequence for tumor localization was 11 min. MRF-derived T1 and T2 values distinguished ST from CWM (T1: 1,444 ± 254 ms vs. 938 ± 96 ms, p = 0.0002; T2: 61 ± 22 ms vs. 38 ± 9 ms, p = 0.0003) and separated high-grade tumors from low-grade tumors (T1: 1,863 ± 70 ms vs. 1,355 ± 187 ms, p = 0.007; T2: 90 ± 13 ms vs. 56 ± 19 ms, p = 0.013). PWM was distinct from CWM (T1: 1,261 ± 359 ms vs. 933 ± 104 ms, p = 0.0008; T2: 65 ± 51 ms vs. 38 ± 8 ms, p = 0.008), as well as from tumor (T1: 1,261 ± 371 ms vs. 1,462 ± 248 ms, p = 0.047). CONCLUSIONS: MRF is a fast sequence that can rapidly distinguish important tissue components in pediatric brain tumor patients. MRF-derived T1 and T2 distinguished tumor from normal-appearing white matter, differentiated tumor grade, and found abnormalities in peritumoral regions. MRF may be useful for rapid quantitative measurement of tissue characteristics and distinguish tumor grade in children and young adults with brain tumors.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Neoplasias Encefálicas/terapia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Gradação de Tumores/métodos , Estudos Prospectivos , Adulto Jovem
17.
Int J Mol Sci ; 20(10)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091655

RESUMO

An integrated approach has been adopted by the World Health Organization (WHO) for diagnosing brain tumors. This approach relies on the molecular characterization of biopsied tissue in conjunction with standard histology. Diffuse gliomas (grade II to grade IV malignant brain tumors) have a wide range in overall survival, from months for the worst cases of glioblastoma (GBM) to years for lower grade astrocytic and oligodendroglial tumors. We previously identified a change in the cell adhesion molecule PTPmu in brain tumors that results in the generation of proteolytic fragments. We developed agents to detect this cell surface-associated biomarker of the tumor microenvironment. In the current study, we evaluated the PTPmu biomarker in tissue microarrays and individual tumor samples of adolescent and young adult (n = 25) and adult (n = 69) glioma populations using a fluorescent histochemical reagent, SBK4-TR, that recognizes the PTPmu biomarker. We correlated staining with clinical data and found that high levels of the PTPmu biomarker correlate with increased survival of glioma patients, including those with GBM. Patients with high PTPmu live for 48 months on average, whereas PTPmu low patients live only 22 months. PTPmu high staining indicates a doubling of patient survival. Use of the agent to detect the PTPmu biomarker would allow differentiation of glioma patients with distinct survival outcomes and would complement current molecular approaches used in glioma prognosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Adolescente , Adulto , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Humanos , Masculino , Prognóstico , Microambiente Tumoral
18.
Genome Res ; 25(3): 316-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25650244

RESUMO

Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼ 7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Exoma , Genoma Humano , Glioblastoma/genética , Glioblastoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Evolução Clonal/genética , Variações do Número de Cópias de DNA , Metilação de DNA , Genômica/métodos , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Pessoa de Meia-Idade , Mutação , Taxa de Mutação , Gradação de Tumores , Recidiva Local de Neoplasia , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
19.
J Transl Med ; 16(1): 179, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29958537

RESUMO

Following publication of the original article [1], the authors reported an error in the spelling of one of the author names. In this Correction the incorrect and correct author names are indicated and the author name has been updated in the original publication. The authors also reported an error in the Methods section of the original article. In this Correction the incorrect and correct versions of the affected sentence are indicated. The original article has not been updated with regards to the error in the Methods section.

20.
J Transl Med ; 16(1): 142, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843811

RESUMO

BACKGROUND: Standard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax®-L) to standard therapy for newly diagnosed glioblastoma. METHODS: After surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99). Following recurrence, all patients were allowed to receive DCVax-L, without unblinding. The primary endpoint was progression free survival (PFS); the secondary endpoint was overall survival (OS). RESULTS: For the intent-to-treat (ITT) population (n = 331), median OS (mOS) was 23.1 months from surgery. Because of the cross-over trial design, nearly 90% of the ITT population received DCVax-L. For patients with methylated MGMT (n = 131), mOS was 34.7 months from surgery, with a 3-year survival of 46.4%. As of this analysis, 223 patients are ≥ 30 months past their surgery date; 67 of these (30.0%) have lived ≥ 30 months and have a Kaplan-Meier (KM)-derived mOS of 46.5 months. 182 patients are ≥ 36 months past surgery; 44 of these (24.2%) have lived ≥ 36 months and have a KM-derived mOS of 88.2 months. A population of extended survivors (n = 100) with mOS of 40.5 months, not explained by known prognostic factors, will be analyzed further. Only 2.1% of ITT patients (n = 7) had a grade 3 or 4 adverse event that was deemed at least possibly related to the vaccine. Overall adverse events with DCVax were comparable to standard therapy alone. CONCLUSIONS: Addition of DCVax-L to standard therapy is feasible and safe in glioblastoma patients, and may extend survival. Trial registration Funded by Northwest Biotherapeutics; Clinicaltrials.gov number: NCT00045968; https://clinicaltrials.gov/ct2/show/NCT00045968?term=NCT00045968&rank=1 ; initially registered 19 September 2002.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Glioblastoma/imunologia , Glioblastoma/terapia , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico , Vacinas Anticâncer/efeitos adversos , Determinação de Ponto Final , Feminino , Glioblastoma/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA