Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nano Lett ; 20(5): 3560-3567, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32324411

RESUMO

Heterostructures built from 2D, atomically thin crystals are bound by the van der Waals force and exhibit unique optoelectronic properties. Here, we report the structure, composition and optoelectronic properties of 1D van der Waals heterostructures comprising carbon nanotubes wrapped by atomically thin nanotubes of boron nitride and molybdenum disulfide (MoS2). The high quality of the composite was directly made evident on the atomic scale by transmission electron microscopy, and on the macroscopic scale by a study of the heterostructure's equilibrium and ultrafast optoelectronics. Ultrafast pump-probe spectroscopy across the visible and terahertz frequency ranges identified that, in the MoS2 nanotubes, excitons coexisted with a prominent population of free charges. The electron mobility was comparable to that found in high-quality atomically thin crystals. The high mobility of the MoS2 nanotubes highlights the potential of 1D van der Waals heterostructures for nanoscale optoelectronic devices.

2.
Nano Lett ; 19(5): 2979-2984, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30973739

RESUMO

We report the observation of four unprecedented new crystalline forms of SnSe, obtained as a result of encapsulation in narrow to medium diameter single-walled carbon nanotubes. Aberration-corrected scanning transmission electron microscopy at 80 kV revealed linear, zigzag, helical (i.e., 2 × 1) atomic chains and a new form of encapsulated SnSe. This new form is apparently isostructural to free-standing MoS, MoSe, and WSe extreme nanowires etched from the corresponding monolayer dichalcogenides and also recently observed encapsulated MoTe. A structural model has been attained from annular dark-field (ADF) images. The experimental imaging agrees well with image simulations produced from models anticipated for the new structural forms.

3.
Nano Lett ; 18(9): 5373-5381, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30067903

RESUMO

Atomically thin black phosphorus (BP) has attracted considerable interest due to its unique properties, such as an infrared band gap that depends on the number of layers and excellent electronic transport characteristics. This material is known to be sensitive to light and oxygen and degrades in air unless protected with an encapsulation barrier, limiting its exploitation in electrical devices. We present a new scalable technique for nanopatterning few layered BP by direct electron beam exposure of encapsulated crystals, achieving a spatial resolution down to 6 nm. By encapsulating the BP with single layer graphene or hexagonal boron nitride (hBN), we show that a focused electron probe can be used to produce controllable local oxidation of BP through nanometre size defects created in the encapsulation layer by the electron impact. We have tested the approach in the scanning transmission electron microscope (STEM) and using industry standard electron beam lithography (EBL). Etched regions of the BP are stabilized by a thin passivation layer and demonstrate typical insulating behavior as measured at 300 and 4.3 K. This new scalable approach to nanopatterning of thin air sensitive crystals has the potential to facilitate their wider use for a variety of sensing and electronics applications.

4.
Nano Lett ; 18(2): 941-947, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29356551

RESUMO

Electrodeposition of Sn from supercritical difluoromethane has been performed into anodic alumina templates with pores down to 3 nm in diameter and into mesoporous silica templates with pores of diameter 1.5 nm. Optimized deposits have been characterized using X-ray diffraction, scanning electron microscopy, and scanning transmission electron microscopy (bright field, high-angle annular dark field, and energy-dispersive X-ray elemental mapping). Crystalline 13 nm diameter Sn nanowires have been electrodeposited in symmetric pore anodic alumina. Direct transmission electron microscopy evidence of sub 7 nm Sn nanowires in asymmetric anodic alumina has been obtained. These same measurements present indirect evidence for electrodeposition through 3 nm constrictions in the same templates. A detailed transmission electron microscopy study of mesoporous silica films after Sn deposition is presented. These indicate that it is possible to deposit Sn through the 1.5 nm pores in the mesoporous films, but that the nanowires formed are not stable. Suggestions of why this is the case and how such extreme nanowires could be stabilized are presented.

5.
Nano Lett ; 17(2): 805-810, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28005367

RESUMO

The structural organization of compounds in a confined space of nanometer-scale cavities is of fundamental importance for understanding the basic principles for atomic structure design at the nanolevel. Here, we explore size-dependent structure relations between one-dimensional PbTe nanocrystals and carbon nanotube containers in the diameter range of 2.0-1.25 nm using high-resolution transmission electron microscopy and ab initio calculations. Upon decrease of the confining volume, one-dimensional crystals reveal gradual thinning, with the structure being cut from the bulk in either a <110> or a <100> growth direction until a certain limit of ∼1.3 nm. This corresponds to the situation when a stoichiometric (uncharged) crystal does not fit into the cavity dimensions. As a result of the in-tube charge compensation, one-dimensional superstructures with nanometer-scale atomic density modulations are formed by a periodic addition of peripheral extra atoms to the main motif. Structural changes in the crystallographic configuration of the composites entail the redistribution of charge density on single-walled carbon nanotube walls and the possible appearance of the electron density wave. The variation of the potential attains 0.4 eV, corresponding to charge density fluctuations of 0.14 e/atom.

6.
J Am Chem Soc ; 138(26): 8175-83, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27258384

RESUMO

In organic synthesis, the composition and structure of products are predetermined by the reaction conditions; however, the synthesis of well-defined inorganic nanostructures often presents a significant challenge yielding nonstoichiometric or polymorphic products. In this study, confinement in the nanoscale cavities of single-walled carbon nanotubes (SWNTs) provides a new approach for multistep inorganic synthesis where sequential chemical transformations take place within the same nanotube. In the first step, SWNTs donate electrons to reactant iodine molecules (I2), transforming them to iodide anions (I(-)). These then react with metal hexacarbonyls (M(CO)6, M = Mo or W) in the next step, yielding anionic nanoclusters [M6I14](2-), the size and composition of which are strictly dictated by the nanotube cavity, as demonstrated by aberration-corrected high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy. Atoms in the nanoclusters [M6I14](2-) are arranged in a perfect octahedral geometry and can engage in further chemical reactions within the nanotube, either reacting with each other leading to a new polymeric phase of molybdenum iodide [Mo6I12]n or with hydrogen sulfide gas giving rise to nanoribbons of molybdenum/tungsten disulfide [MS2]n in the third step of the synthesis. Electron microscopy measurements demonstrate that the products of the multistep inorganic transformations are precisely controlled by the SWNT nanoreactor with complementary Raman spectroscopy revealing the remarkable property of SWNTs to act as a reservoir of electrons during the chemical transformation. The electron transfer from the host nanotube to the reacting guest molecules is essential for stabilizing the anionic metal iodide nanoclusters and for their further transformation to metal disulfide nanoribbons synthesized in the nanotubes in high yield.

7.
Chemistry ; 22(51): 18362-18367, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27727487

RESUMO

Cation size effects were examined in the mixed A-site perovskites La0.5 Sm0.5 CrO3 and La0.5 Tb0.5 CrO3 prepared through both hydrothermal and solid-state methods. Atomically resolved electron energy loss spectroscopy (EELS) in the transmission electron microscope shows that while the La and Sm cations are randomly distributed, increased cation-radius variance in La0.5 Tb0.5 CrO3 results in regions of localised La and Tb layers, an atomic arrangement exclusive to the hydrothermally prepared material. Solid-state preparation gives lower homogeneity resulting in separate nanoscale regions rich in La3+ and Tb3+ . The A-site layering in hydrothermal La0.5 Tb0.5 CrO3 is randomised upon annealing at high temperature, resulting in magnetic behaviour that is dependent on synthesis route.

8.
Phys Chem Chem Phys ; 17(6): 4763-70, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25589465

RESUMO

The production of thin mesoporous silica films with small (∼2-3 nm) pores oriented perpendicular to a titanium nitride growth surface is demonstrated using two methods. These are the growth from a Stöber silica solution with surfactant ordering at the surface of the electrode, and electrochemically assisted growth from an acidic sol achieved by polarisation of the electrode surface. The thickness, pore order and pore size that can be achieved with these two methods is contrasted. A number of methods to vary the pore size by using different surfactants and swelling agents are explored. The advantage of applying these growth methods on titanium nitride surfaces is that it provides access to a wider electrochemical window for nanowire growth and sensor applications with non-aqueous electrolytes whilst retaining good film growth and adhesion properties.

9.
Angew Chem Int Ed Engl ; 54(33): 9560-3, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26148646

RESUMO

Atomic-resolution transmission electron microscopy was used to identify individual Au9 clusters on a sulfur-functionalized graphene surface. The clusters were preformed in solution and covalently attached to the surface without any dispersion or aggregation. Comparison of the experimental images with simulations allowed the rotational motion, without lateral displacement, of individual clusters to be discerned, thereby demonstrating a robust covalent attachment of intact clusters to the graphene surface.

10.
Nano Lett ; 13(9): 4020-7, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23984706

RESUMO

The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.

11.
Angew Chem Int Ed Engl ; 53(41): 10960-4, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25196322

RESUMO

The pyrochlore solid solution (Na(0.33)Ce(0.67))2(Ir(1-x)Ru(x))2O7 (0≤x≤1), containing B-site Ru(IV) and Ir(IV) is prepared by hydrothermal synthesis and used as a catalyst layer for electrochemical oxygen evolution from water at pH<7. The materials have atomically mixed Ru and Ir and their nanocrystalline form allows effective fabrication of electrode coatings with improved charge densities over a typical (Ru,Ir)O2 catalyst. An in situ study of the catalyst layers using XANES spectroscopy at the Ir L(III) and Ru K edges shows that both Ru and Ir participate in redox chemistry at oxygen evolution conditions and that Ru is more active than Ir, being oxidized by almost one oxidation state at maximum applied potential, with no evidence for ruthenate or iridate in +6 or higher oxidation states.

12.
Nat Commun ; 15(1): 5420, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926341

RESUMO

As water miscible organic co-solvents are often required for enzyme reactions to improve e.g., the solubility of the substrate in the aqueous medium, an enzyme is required which displays high stability in the presence of this co-solvent. Consequently, it is of utmost importance to identify the most suitable enzyme or the appropriate reaction conditions. Until now, the melting temperature is used in general as a measure for stability of enzymes. The experiments here show, that the melting temperature does not correlate to the activity observed in the presence of the solvent. As an alternative parameter, the concentration of the co-solvent at the point of 50% protein unfolding at a specific temperature T in short c U 50 T is introduced. Analyzing a set of ene reductases, c U 50 T is shown to indicate the concentration of the co-solvent where also the activity of the enzyme drops fastest. Comparing possible rankings of enzymes according to melting temperature and c U 50 T reveals a clearly diverging outcome also depending on the specific solvent used. Additionally, plots of c U 50 versus temperature enable a fast identification of possible reaction windows to deduce tolerated solvent concentrations and temperature.


Assuntos
Estabilidade Enzimática , Desdobramento de Proteína , Solventes , Solventes/química , Temperatura , Temperatura de Transição , Oxirredutases/química , Oxirredutases/metabolismo
13.
Inorg Chem ; 52(20): 12161-9, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24102287

RESUMO

A new mixed rare-earth orthochromite series, LaxSm1-xCrO3, prepared through single-step hydrothermal synthesis is reported. Solid solutions (x = 0, 0.25, 0.5, 0.625, 0.75, 0.875, and 1.0) were prepared by the hydrothermal treatment of amorphous mixed-metal hydroxides at 370 °C for 48 h. Transmission electron microscopy (TEM) reveals the formation of highly crystalline particles with dendritic-like morphologies. Rietveld refinements against high-resolution powder X-ray diffraction (PXRD) data show that the distorted perovskite structures are described by the orthorhombic space group Pnma over the full composition range. Unit cell volumes and Cr-O-Cr bond angles decrease monotonically with increasing samarium content, consistent with the presence of the smaller lanthanide in the structure. Raman spectroscopy confirms the formation of solid solutions, the degree of their structural distortion. With the aid of shell-model calculations the complex mixing of Raman modes below 250 cm(-1) is clarified. Magnetometry as a function of temperature reveals the onset of low-temperature antiferromagnetic ordering of Cr(3+) spins with weak ferromagnetic component at Néel temperatures (TN) that scale linearly with unit cell volume and structural distortion. Coupling effects between Cr(3+) and Sm(3+) ions are examined with enhanced susceptibilities below TN due to polarization of Sm(3+) moments. At low temperatures the Cr(3+) sublattice is shown to undergo a second-order spin reorientation observed as a rapid decrease of susceptibility.

14.
Adv Mater ; 35(10): e2208575, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36528852

RESUMO

Halide perovskite structures are revolutionizing the design of optoelectronic materials, including solar cells, light-emitting diodes, and photovoltaics when formed at the quantum scale. Four isolated sub-nanometer, or picoscale, halide perovskite structures formed inside ≈1.2-1.6 nm single-walled carbon nanotubes (SWCNTs) by melt insertion from CsPbBr3 and lead-free CsSnI3 are reported. Three directly relate to the ABX3 perovskite archetype while a fourth is a perovskite-like lamellar structure with alternating Cs4 and polyhedral Sn4 Ix layers. In ≈1.4 nm-diameter SWCNTs, CsPbBr3 forms Cs3 PbII Br5 nanowires, one ABX3 unit cell in cross section with the Pb2+ oxidation state maintained by ordered Cs+ vacancies. Within ≈1.2 nm-diameter SWCNTs, CsPbBr3 and CsSnI3 form inorganic-polymer-like bilayer structures, one-fourth of an ABX3 unit cell in cross section with systematically reproduced ABX3 stoichiometry. Producing these smallest halide perovskite structures at their absolute synthetic cross-sectional limit enables quantum confinement effects with first-principles calculations demonstrating bandgap widening compared to corresponding bulk structural forms.

15.
ACS Appl Nano Mater ; 6(4): 2883-2893, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36875181

RESUMO

Studying the optical performance of carbon nanotubes (CNTs) filled with guest materials can reveal the fundamental photochemical nature of ultrathin one-dimensional (1D) nanosystems, which are attractive for applications including photocatalysis. Here, we report comprehensive spectroscopic studies of how infiltrated HgTe nanowires (NWs) alter the optical properties of small-diameter (d t < 1 nm) single-walled carbon nanotubes (SWCNTs) in different environments: isolated in solution, suspended in a gelatin matrix, and heavily bundled in network-like thin films. Temperature-dependent Raman and photoluminescence measurements revealed that the HgTe NW filling can alter the stiffness of SWCNTs and therefore modify their vibrational and optical modes. Results from optical absorption and X-ray photoelectron spectroscopy demonstrated that the semiconducting HgTe NWs did not provide substantial charge transfer to or from the SWCNTs. Transient absorption spectroscopy further highlighted that the filling-induced nanotube distortion can alter the temporal evolution of excitons and their transient spectra. In contrast to previous studies on functionalized CNTs, where electronic or chemical doping often drove changes to the optical spectra, we highlight structural distortion as playing an important role.

16.
ACS Nano ; 16(4): 6789-6800, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35389617

RESUMO

Atomically thin nanowires (NWs) can be synthesized inside single-walled carbon nanotubes (SWCNTs) and feature unique crystal structures. Here we show that HgTe nanowires formed inside small-diameter (<1 nm) SWCNTs can advantageously alter the optical and electronic properties of the SWCNTs. Metallic purification of the filled SWCNTs was achieved by a gel column chromatography method, leading to an efficient extraction of the semiconducting and metallic portions with known chiralities. Electron microscopic imaging revealed that zigzag HgTe chains were the dominant NW geometry in both the semiconducting and metallic species. Equilibrium-state and ultrafast spectroscopy demonstrated that the coupled electron-phonon system was modified by the encapsulated HgTe NWs, in a way that varied with the chirality. For semiconducting SWCNTs with HgTe NWs, Auger relaxation processes were suppressed, leading to enhanced photoluminescence emission. In contrast, HgTe NWs enhanced the Auger relaxation rate of metallic SWCNTs and created faster phonon relaxation, providing experimental evidence that encapsulated atomic chains can suppress hot carrier effects and therefore boost electronic transport.

17.
Nano Lett ; 10(11): 4600-6, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20977206

RESUMO

Atomic-resolution imaging of discrete [γ-SiW10O36]8- lacunary Keggin ions dispersed onto monolayer graphene oxide (GO) films by low voltage aberration corrected transmission electron microscopy is described. Under low electron beam dose, individual anions remain stationary for long enough that a variety of projections can be observed and structural information extracted with ca. ± 0.03 nm precision. Unambiguous assignment of the orientation of individual ions with respect to the point symmetry elements can be determined. The C2v symmetry [γ-SiW10O36]8- ion was imaged along its 2-fold C2 axis or orthogonally with respect to one of two nonequivalent mirror planes (i.e., σv). Continued electron beam exposure of a second ion imaged orthogonal to σv causes it to translate and/or rotate in an inhibited fashion so that the ion can be viewed in different relative orientations. The inhibited surface motion of the anion, which is in response to H-bonding-type interactions, reveals an important new property for GO in that it demonstrably behaves as a chemically modified (i.e., rather than chemically neutral) surface in electron microscopy. This behavior indicates that GO has more in common with substrates used in imaging techniques such as atomic force microscopy and scanning tunneling microscopy, and this clearly sets it apart from other support films used in transmission electron microscopy.


Assuntos
Grafite/química , Microscopia Eletrônica/métodos , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Tungstênio/química , Simulação por Computador , Íons , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Óxidos/química , Tamanho da Partícula , Rotação , Propriedades de Superfície
18.
ACS Nano ; 15(8): 13389-13398, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34370946

RESUMO

One-dimensional (1D) atomic chains of CsI were previously reported in double-walled carbon nanotubes with ∼0.8 nm inner diameter. Here, we demonstrate that, while 1D CsI chains form within narrow ∼0.73 nm diameter single-walled carbon nanotubes (SWCNTs), wider SWCNT tubules (∼0.8-1.1 nm) promote the formation of helical chains of CsI 2 × 1 atoms in cross-section. These CsI helices create complementary oval distortions in encapsulating SWCNTs with highly strained helices formed from strained Cs2I2 parallelogram units in narrow tubes to lower strain Cs2I2 units in wider tubes. The observed structural changes and charge distribution were analyzed by density-functional theory and Bader analysis. CsI chains also produce conformation-selective changes to the electronic structure and optical properties of the encapsulating tubules. The observed defects are an interesting variation from defects commonly observed in alkali halides as these are normally associated with the Schottky and Frenkel type. The energetics of CsI 2 × 1 helix formation in SWCNTs suggests how these could be controllably formed.

19.
Nat Commun ; 11(1): 2223, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376862

RESUMO

Stem cells are one of the foundational evolutionary novelties that allowed the independent emergence of multicellularity in the plant and animal lineages. In plants, the homeodomain (HD) transcription factor WUSCHEL (WUS) is essential for the maintenance of stem cells in the shoot apical meristem. WUS has been reported to bind to diverse DNA motifs and to act as transcriptional activator and repressor. However, the mechanisms underlying this remarkable behavior have remained unclear. Here, we quantitatively delineate WUS binding to three divergent DNA motifs and resolve the relevant structural underpinnings. We show that WUS exhibits a strong binding preference for TGAA repeat sequences, while retaining the ability to weakly bind to TAAT elements. This behavior is attributable to the formation of dimers through interactions of specific residues in the HD that stabilize WUS DNA interaction. Our results provide a mechanistic basis for dissecting WUS dependent regulatory networks in plant stem cell control.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Motivos de Nucleotídeos/genética , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA/metabolismo , Dimerização , Proteínas de Homeodomínio/genética , Brotos de Planta/genética , Ligação Proteica , Sequências Repetitivas de Ácido Nucleico/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Angew Chem Int Ed Engl ; 48(7): 1230-3, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19025746

RESUMO

Multiwall WS(2) nanotube templates were used as hosts to prepare core-shell PbI(2)@WS(2) nanotubes by a capillary-wetting method. Conformal growth of PbI(2) layers on the inner wall of the relatively wide WS(2) nanotubes (i.d. ca. 10 nm) leads to nanotubular structures which were not previously observed in narrow carbon nanotube templates. Image simulation after structural modeling (see picture) showed good agreement with the experimental HRTEM image.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA