Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 165(4): 921-35, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27114033

RESUMO

Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Ativação do Complemento , Complemento C1q/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microglia/metabolismo , Envelhecimento/imunologia , Animais , Líquido Cefalorraquidiano , Complemento C1q/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Granulinas , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lisossomos/metabolismo , Redes e Vias Metabólicas , Camundongos , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismo , Progranulinas , Sinapses/metabolismo , Tálamo/metabolismo
2.
Pediatr Crit Care Med ; 25(7 Suppl 1): e25-e34, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959357

RESUMO

OBJECTIVES: To derive systematic-review informed, modified Delphi consensus regarding prophylactic transfusions in neonates and children supported with extracorporeal membrane oxygenation (ECMO) from the Pediatric ECMO Anticoagulation CollaborativE. DATA SOURCES: A structured literature search was performed using PubMed, EMBASE, and Cochrane Library (CENTRAL) databases from January 1988 to May 2020, with an update in May 2021. STUDY SELECTION: Included studies assessed use of prophylactic blood product transfusion in pediatric ECMO. DATA EXTRACTION: Two authors reviewed all citations independently, with a third independent reviewer resolving conflicts. Thirty-three references were used for data extraction and informed recommendations. Evidence tables were constructed using a standardized data extraction form. MEASUREMENTS AND MAIN RESULTS: The evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation system. Forty-eight experts met over 2 years to develop evidence-informed recommendations and, when evidence was lacking, expert-based consensus statements or good practice statements for prophylactic transfusion strategies for children supported with ECMO. A web-based modified Delphi process was used to build consensus via the Research And Development/University of California Appropriateness Method. Consensus was based on a modified Delphi process with agreement defined as greater than 80%. We developed two good practice statements, 4 weak recommendations, and three expert consensus statements. CONCLUSIONS: Despite the frequency with which pediatric ECMO patients are transfused, there is insufficient evidence to formulate evidence-based prophylactic transfusion strategies.


Assuntos
Transfusão de Sangue , Técnica Delphi , Oxigenação por Membrana Extracorpórea , Humanos , Oxigenação por Membrana Extracorpórea/métodos , Criança , Transfusão de Sangue/normas , Transfusão de Sangue/métodos , Recém-Nascido , Lactente , Consenso , Pré-Escolar
3.
Pediatr Crit Care Med ; 25(7): 643-675, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959353

RESUMO

OBJECTIVES: To present recommendations and consensus statements with supporting literature for the clinical management of neonates and children supported with extracorporeal membrane oxygenation (ECMO) from the Pediatric ECMO Anticoagulation CollaborativE (PEACE) consensus conference. DATA SOURCES: Systematic review was performed using PubMed, Embase, and Cochrane Library (CENTRAL) databases from January 1988 to May 2021, followed by serial meetings of international, interprofessional experts in the management ECMO for critically ill children. STUDY SELECTION: The management of ECMO anticoagulation for critically ill children. DATA EXTRACTION: Within each of eight subgroup, two authors reviewed all citations independently, with a third independent reviewer resolving any conflicts. DATA SYNTHESIS: A systematic review was conducted using MEDLINE, Embase, and Cochrane Library databases, from January 1988 to May 2021. Each panel developed evidence-based and, when evidence was insufficient, expert-based statements for the clinical management of anticoagulation for children supported with ECMO. These statements were reviewed and ratified by 48 PEACE experts. Consensus was obtained using the Research and Development/UCLA Appropriateness Method. Results were summarized using the Grading of Recommendations Assessment, Development, and Evaluation method. We developed 23 recommendations, 52 expert consensus statements, and 16 good practice statements covering the management of ECMO anticoagulation in three broad categories: general care and monitoring; perioperative care; and nonprocedural bleeding or thrombosis. Gaps in knowledge and research priorities were identified, along with three research focused good practice statements. CONCLUSIONS: The 91 statements focused on clinical care will form the basis for standardization and future clinical trials.


Assuntos
Anticoagulantes , Estado Terminal , Oxigenação por Membrana Extracorpórea , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Anticoagulantes/uso terapêutico , Anticoagulantes/administração & dosagem , Criança , Estado Terminal/terapia , Recém-Nascido , Lactente , Pré-Escolar
4.
Glia ; 71(8): 1921-1946, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029775

RESUMO

Astrocyte maturation is crucial to proper brain development and function. This maturation process includes the ramification of astrocytic morphology and the establishment of astrocytic domains. While this process has been well-studied, the mechanisms by which astrocyte maturation is initiated are not well understood. GPR37L1 is an astrocyte-specific G protein-coupled receptor (GPCR) that is predominantly expressed in mature astrocytes and has been linked to the modulation of seizure susceptibility in both humans and mice. To investigate the role of GPR37L1 in astrocyte biology, RNA-seq analyses were performed on astrocytes immunopanned from P7 Gpr37L1-/- knockout (L1KO) mouse cortex and compared to those from wild-type (WT) mouse cortex. These RNA-seq studies revealed that pathways involved in central nervous system development were altered and that L1KO cortical astrocytes express lower amounts of mature astrocytic genes compared to WT astrocytes. Immunohistochemical studies of astrocytes from L1KO mouse brain revealed that these astrocytes exhibit overall shorter total process length, and are also less complex and spaced further apart from each other in the mouse cortex. This work sheds light on how GPR37L1 regulates cellular processes involved in the control of astrocyte biology and maturation.


Assuntos
Astrócitos , Receptores Acoplados a Proteínas G , Humanos , Camundongos , Animais , Astrócitos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Convulsões/metabolismo
5.
Transfusion ; 63(5): 960-972, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36994786

RESUMO

BACKGROUND: Due to platelet availability limitations, platelet units ABO mismatched to recipients are often transfused. However, since platelets express ABO antigens and are collected in plasma which may contain ABO isohemagglutinins, it remains controversial as to whether ABO non-identical platelet transfusions could potentially pose harm and/or have reduced efficacy. STUDY DESIGN AND METHODS: The large 4-year publicly available Recipient Epidemiology and Donor Evaluation Study-III (REDS-III) database was used to investigate patient outcomes associated with ABO non-identical platelet transfusions. Outcomes included mortality, sepsis, and subsequent platelet transfusion requirements. RESULTS: Following adjustment for possible confounding factors, no statistically significant association between ABO non-identical platelet transfusion and increased risk of mortality was observed in the overall cohort of 21,176 recipients. However, when analyzed by diagnostic category and recipient ABO group, associations with increased mortality for major mismatched transfusions were noted in two of eight subpopulations. Hematology/Oncology blood group A and B recipients (but not group O) showed a Hazard Ratio (HR) of 1.29 (95%CI: 1.03-1.62) and intracerebral hemorrhage group O recipients (but not groups A and B) showed a HR of 1.75 (95%CI: 1.10-2.80). Major mismatched transfusions were associated with increased odds of receiving additional platelet transfusion each post-transfusion day (through day 5) regardless of the recipient blood group. DISCUSSION: We suggest that prospective studies are needed to determine if specific patient populations would benefit from receiving ABO identical platelet units. Our findings indicate that ABO-identical platelet products minimize patient exposure to additional platelet doses.


Assuntos
Transfusão de Plaquetas , Reação Transfusional , Humanos , Transfusão de Plaquetas/efeitos adversos , Plaquetas , Estudos Retrospectivos , Sistema ABO de Grupos Sanguíneos , Incompatibilidade de Grupos Sanguíneos/epidemiologia , Reação Transfusional/etiologia
6.
J Neuroinflammation ; 19(1): 105, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35501870

RESUMO

BACKGROUND: The important contribution of glia to mechanisms of injury and repair of the nervous system is increasingly recognized. In stark contrast to the central nervous system (CNS), the peripheral nervous system (PNS) has a remarkable capacity for regeneration after injury. Schwann cells are recognized as key contributors to PNS regeneration, but the molecular underpinnings of the Schwann cell response to injury and how they interact with the inflammatory response remain incompletely understood. METHODS: We completed bulk RNA-sequencing of Schwann cells purified acutely using immunopanning from the naïve and injured rodent sciatic nerve at 3, 5, and 7 days post-injury. We used qRT-PCR and in situ hybridization to assess cell purity and probe dataset integrity. Finally, we used bioinformatic analysis to probe Schwann cell-specific injury-induced modulation of cellular pathways. RESULTS: Our data confirm Schwann cell purity and validate RNAseq dataset integrity. Bioinformatic analysis identifies discrete modules of genes that follow distinct patterns of regulation in the 1st days after injury and their corresponding molecular pathways. These findings enable improved differentiation of myeloid and glial components of neuroinflammation after peripheral nerve injury and highlight novel molecular aspects of the Schwann cell injury response such as acute downregulation of the AGE/RAGE pathway and of secreted molecules Sparcl1 and Sema5a. CONCLUSIONS: We provide a helpful resource for further deciphering the Schwann cell injury response and a depth of transcriptional data that can complement the findings of recent single cell sequencing approaches. As more data become available on the response of CNS glia to injury, we anticipate that this dataset will provide a valuable platform for understanding key differences in the PNS and CNS glial responses to injury and for designing approaches to ameliorate CNS regeneration.


Assuntos
Traumatismos dos Nervos Periféricos , Animais , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , RNA/metabolismo , Roedores , Células de Schwann/metabolismo , Transcriptoma
7.
Blood ; 133(6): 605-614, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30429159

RESUMO

More than 1 million apheresis platelet collections are performed annually in the United States. After 2 healthy plateletpheresis donors were incidentally found to have low CD4+ T-lymphocyte counts, we investigated whether plateletpheresis causes lymphopenia. We conducted a cross-sectional single-center study of platelet donors undergoing plateletpheresis with the Trima Accel, which removes leukocytes continuously with its leukoreduction system chamber. We recruited 3 groups of platelet donors based on the total number of plateletpheresis sessions in the prior 365 days: 1 or 2, 3 to 19, or 20 to 24. CD4+ T-lymphocyte counts were <200 cells per microliter in 0/20, 2/20, and 6/20 donors, respectively (P = .019), and CD8+ T-lymphocyte counts were low in 0/20, 4/20, and 11/20 donors, respectively (P < .001). The leukoreduction system chamber's lymphocyte-extraction efficiency was ∼15% to 20% for all groups. Immunophenotyping showed decreases in naive CD4+ T-lymphocyte and T helper 17 (Th17) cell percentages, increases in CD4+ and CD8+ effector memory, Th1, and regulatory T cell percentages, and stable naive CD8+ and Th2 percentages across groups. T-cell receptor repertoire analyses showed similar clonal diversity in all groups. Donor screening questionnaires supported the good health of the donors, who tested negative at each donation for multiple pathogens, including HIV. Frequent plateletpheresis utilizing a leukoreduction system chamber is associated with CD4+ and CD8+ T-cell lymphopenia in healthy platelet donors. The mechanism may be repeated extraction of these cells during plateletpheresis. The cytopenias do not appear to be harmful.


Assuntos
Doadores de Sangue/estatística & dados numéricos , Plaquetas/citologia , Linfopenia/etiologia , Plaquetoferese/efeitos adversos , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Prognóstico , Adulto Jovem
8.
Transfusion ; 61(4): 1080-1092, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33629748

RESUMO

BACKGROUND: We hypothesized that variability in practice exists for newborn immunohematology testing due to lack of consensus guidelines. We report the results of a survey assessing that variability at hospitals in the United States and Canada. STUDY DESIGN AND METHODS: An AABB Pediatric Subsection working party developed and validated a survey of newborn immunohematology testing practice. The survey was sent electronically to transfusion service leadership at teaching institutions. RESULTS: The response rate was 67% (61/91); 56 surveys meeting inclusion criteria were analyzed. Approximately 90% (50/56) were from birth hospitals and 16.1% (9/56) were from pediatric hospitals. Newborn immunohematology testing is ordered as a panel by 66.0% (33/50) of birth hospitals. ABO group and DAT is mandated before discharge in 14/56 (25.0%) and 13/56 (23.2%), respectively. About 76.8% (43/56) selectively perform a DAT according to blood blank or clinical parameters. The most common DAT practices include anti-IgG only testing by 73.2% (41/56) and use of umbilical cord specimen type by 67.9% (38/56). A positive DAT is a critical value for 26.8% (15/56) and followed with eluate testing when a maternal antibody screen is positive for 48.2% (27/56). In the setting of a non-ABO maternal red cell antibody, 55.4% (31/56), phenotype neonatal red cells when the DAT is positive. Group O RBC are transfused irrespective of the DAT result for 82.1%, (46/56). CONCLUSION: There is variability in newborn immunohematology testing and transfusion practice and potential overutilization of the DAT. Evidence-based consensus guidelines should be developed to standardize practice and to improve safety.


Assuntos
Teste de Coombs/estatística & dados numéricos , Eritroblastose Fetal/imunologia , Recém-Nascido/imunologia , Medicina Transfusional/normas , Sistema ABO de Grupos Sanguíneos/imunologia , Anticorpos Anti-Idiotípicos/análise , Bilirrubina/análise , Canadá/epidemiologia , Teste de Coombs/normas , Eritroblastose Fetal/diagnóstico , Eritroblastose Fetal/epidemiologia , Eritrócitos/imunologia , Sangue Fetal/imunologia , Sangue Fetal/metabolismo , Humanos , Hiperbilirrubinemia/sangue , Hiperbilirrubinemia/diagnóstico , Lactente , Recém-Nascido/sangue , Guias de Prática Clínica como Assunto/normas , Prevalência , Estudos Retrospectivos , Inquéritos e Questionários , Estados Unidos/epidemiologia
9.
Proc Natl Acad Sci U S A ; 114(38): E8072-E8080, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874532

RESUMO

Ineffective myelin debris clearance is a major factor contributing to the poor regenerative ability of the central nervous system. In stark contrast, rapid clearance of myelin debris from the injured peripheral nervous system (PNS) is one of the keys to this system's remarkable regenerative capacity, but the molecular mechanisms driving PNS myelin clearance are incompletely understood. We set out to discover new pathways of PNS myelin clearance to identify novel strategies for activating myelin clearance in the injured central nervous system, where myelin debris is not cleared efficiently. Here we show that Schwann cells, the myelinating glia of the PNS, collaborate with hematogenous macrophages to clear myelin debris using TAM (Tyro3, Axl, Mer) receptor-mediated phagocytosis as well as autophagy. In a mouse model of PNS nerve crush injury, Schwann cells up-regulate TAM phagocytic receptors Axl and Mertk following PNS injury, and Schwann cells lacking both of these phagocytic receptors exhibit significantly impaired myelin phagocytosis both in vitro and in vivo. Autophagy-deficient Schwann cells also display reductions in myelin clearance after mouse nerve crush injury, as has been recently shown following nerve transection. These findings add a mechanism, Axl/Mertk-mediated myelin clearance, to the repertoire of cellular machinery used to clear myelin in the injured PNS. Given recent evidence that astrocytes express Axl and Mertk and have previously unrecognized phagocytic potential, this pathway may be a promising avenue for activating myelin clearance after CNS injury.


Assuntos
Autofagia , Bainha de Mielina/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Fagocitose , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Bainha de Mielina/genética , Bainha de Mielina/patologia , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , c-Mer Tirosina Quinase/genética , Receptor Tirosina Quinase Axl
10.
J Neurosci ; 38(13): 3149-3153, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29330328

RESUMO

For many years, efforts to decipher the various cellular components that comprise the CNS were stymied by a lack of technical strategies for isolating and profiling the brain's resident cell types. The advent of transcriptional profiling, combined with powerful new purification schemes, changed this reality and transformed our understanding of the macroglial populations within the brain. Here, we chronicle the historical context and scientific setting for our efforts to transcriptionally profile neurons, astrocytes, and oligodendrocytes, and highlight some of the profound discoveries that were cultivated by these data.Following a lengthy battle with pancreatic cancer, Ben Barres passed away during the writing of this Progression piece. Among Ben's innumerable contributions to the greater scientific community, his addition of publicly available transcriptome databases of CNS cell types will forever remain a relic of his generous spirit and boundless scientific curiosity. Although he had impressively committed a majority of these enormous gene lists to memory, Ben could oftentimes be spotted at meetings buried in his cell phone on the Barres RNAseq database. Perhaps the only thing he enjoyed more than exploring these data himself, was knowing how useful these contributions had been (and will hopefully continue to be) to his scientific peers.


Assuntos
Encéfalo/metabolismo , Bases de Dados Genéticas , Transcriptoma , Animais , Encéfalo/citologia , Perfilação da Expressão Gênica/métodos , Humanos
11.
Glia ; 67(8): 1571-1597, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31033049

RESUMO

Astrocytes are critical for the development and function of the central nervous system. In developing brains, immature astrocytes undergo morphological, molecular, cellular, and functional changes as they mature. Although the mechanisms that regulate the maturation of other major cell types in the central nervous system such as neurons and oligodendrocytes have been extensively studied, little is known about the cellular and molecular mechanisms that control astrocyte maturation. Here, we identified molecular markers of astrocyte maturation and established an in vitro assay for studying the mechanisms of astrocyte maturation. Maturing astrocytes in vitro exhibit similar molecular changes and represent multiple molecular subtypes of astrocytes found in vivo. Using this system, we found that astrocyte-to-astrocyte contact strongly promotes astrocyte maturation. In addition, secreted signals from microglia, oligodendrocyte precursor cells, or endothelial cells affect a small subset of astrocyte genes but do not consistently change astrocyte maturation. To identify molecular mechanisms underlying astrocyte maturation, we treated maturing astrocytes with molecules that affect the function of tumor-associated genes. We found that a positive feedback loop of heparin-binding epidermal growth factor-like growth factor (HBEGF) and epidermal growth factor receptor (EGFR) signaling regulates astrocytes maturation. Furthermore, HBEGF, EGFR, and tumor protein 53 (TP53) affect the expression of genes important for cilium development, the circadian clock, and synapse function. These results revealed cellular and molecular mechanisms underlying astrocytes maturation with implications for the understanding of glioblastoma.


Assuntos
Astrócitos/fisiologia , Comunicação Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Animais , Astrócitos/ultraestrutura , Células Cultivadas , Células Endoteliais/fisiologia , Receptores ErbB/genética , Retroalimentação Fisiológica , Genes Neoplásicos/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Microglia/fisiologia , Oligodendroglia/fisiologia , Ratos , Proteína Supressora de Tumor p53/genética
15.
N Engl J Med ; 372(15): 1419-29, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25853746

RESUMO

BACKGROUND: Some observational studies have reported that transfusion of red-cell units that have been stored for more than 2 to 3 weeks is associated with serious, even fatal, adverse events. Patients undergoing cardiac surgery may be especially vulnerable to the adverse effects of transfusion. METHODS: We conducted a randomized trial at multiple sites from 2010 to 2014. Participants 12 years of age or older who were undergoing complex cardiac surgery and were likely to undergo transfusion of red cells were randomly assigned to receive leukocyte-reduced red cells stored for 10 days or less (shorter-term storage group) or for 21 days or more (longer-term storage group) for all intraoperative and postoperative transfusions. The primary outcome was the change in Multiple Organ Dysfunction Score (MODS; range, 0 to 24, with higher scores indicating more severe organ dysfunction) from the preoperative score to the highest composite score through day 7 or the time of death or discharge. RESULTS: The median storage time of red-cell units provided to the 1098 participants who received red-cell transfusion was 7 days in the shorter-term storage group and 28 days in the longer-term storage group. The mean change in MODS was an increase of 8.5 and 8.7 points, respectively (95% confidence interval for the difference, -0.6 to 0.3; P=0.44). The 7-day mortality was 2.8% in the shorter-term storage group and 2.0% in the longer-term storage group (P=0.43); 28-day mortality was 4.4% and 5.3%, respectively (P=0.57). Adverse events did not differ significantly between groups except that hyperbilirubinemia was more common in the longer-term storage group. CONCLUSIONS: The duration of red-cell storage was not associated with significant differences in the change in MODS. We did not find that the transfusion of red cells stored for 10 days or less was superior to the transfusion of red cells stored for 21 days or more among patients 12 years of age or older who were undergoing complex cardiac surgery. (Funded by the National Heart, Lung, and Blood Institute; RECESS ClinicalTrials.gov number, NCT00991341.).


Assuntos
Preservação de Sangue , Procedimentos Cirúrgicos Cardíacos , Transfusão de Eritrócitos , Adulto , Idoso , Tipagem e Reações Cruzadas Sanguíneas , Transfusão de Eritrócitos/efeitos adversos , Feminino , Humanos , Análise de Intenção de Tratamento , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Mortalidade , Insuficiência de Múltiplos Órgãos/classificação , Modelos de Riscos Proporcionais , Índice de Gravidade de Doença , Fatores de Tempo
16.
Nat Methods ; 12(7): 671-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26005811

RESUMO

The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex-like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.


Assuntos
Astrócitos/fisiologia , Córtex Cerebral/fisiologia , Células-Tronco Pluripotentes/citologia , Astrócitos/citologia , Células Cultivadas , Córtex Cerebral/citologia , Humanos , Esferoides Celulares , Sinapses/fisiologia
19.
PLoS Genet ; 11(12): e1005669, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26683846

RESUMO

Long non-coding RNAs (lncRNAs) (> 200 bp) play crucial roles in transcriptional regulation during numerous biological processes. However, it is challenging to comprehensively identify lncRNAs, because they are often expressed at low levels and with more cell-type specificity than are protein-coding genes. In the present study, we performed ab initio transcriptome reconstruction using eight purified cell populations from mouse cortex and detected more than 5000 lncRNAs. Predicting the functions of lncRNAs using cell-type specific data revealed their potential functional roles in Central Nervous System (CNS) development. We performed motif searches in ENCODE DNase I digital footprint data and Mouse ENCODE promoters to infer transcription factor (TF) occupancy. By integrating TF binding and cell-type specific transcriptomic data, we constructed a novel framework that is useful for systematically identifying lncRNAs that are potentially essential for brain cell fate determination. Based on this integrative analysis, we identified lncRNAs that are regulated during Oligodendrocyte Precursor Cell (OPC) differentiation from Neural Stem Cells (NSCs) and that are likely to be involved in oligodendrogenesis. The top candidate, lnc-OPC, shows highly specific expression in OPCs and remarkable sequence conservation among placental mammals. Interestingly, lnc-OPC is significantly up-regulated in glial progenitors from experimental autoimmune encephalomyelitis (EAE) mouse models compared to wild-type mice. OLIG2-binding sites in the upstream regulatory region of lnc-OPC were identified by ChIP (chromatin immunoprecipitation)-Sequencing and validated by luciferase assays. Loss-of-function experiments confirmed that lnc-OPC plays a functional role in OPC genesis. Overall, our results substantiated the role of lncRNA in OPC fate determination and provided an unprecedented data source for future functional investigations in CNS cell types. We present our datasets and analysis results via the interactive genome browser at our laboratory website that is freely accessible to the research community. This is the first lncRNA expression database of collective populations of glia, vascular cells, and neurons. We anticipate that these studies will advance the knowledge of this major class of non-coding genes and their potential roles in neurological development and diseases.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Córtex Cerebral/crescimento & desenvolvimento , RNA Longo não Codificante/genética , Transcriptoma/genética , Animais , Córtex Cerebral/metabolismo , Sequência Conservada/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma , Camundongos , Neurônios/metabolismo , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/classificação
20.
Proc Natl Acad Sci U S A ; 112(23): 7285-90, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26060301

RESUMO

The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.


Assuntos
Encéfalo/metabolismo , Análise de Célula Única , Transcriptoma , Adulto , Encéfalo/citologia , Encéfalo/embriologia , Antígenos HLA/imunologia , Humanos , Neurônios/citologia , Neurônios/imunologia , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA