Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7845): 268-274, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568825

RESUMO

Fundamental relationships are believed to exist between the symmetries of building blocks and the condensed matter phases that they form1. For example, constituent molecular and colloidal rods and disks impart their uniaxial symmetry onto nematic liquid crystals, such as those used in displays1,2. Low-symmetry organizations could form in mixtures of rods and disks3-5, but entropy tends to phase-separate them at the molecular and colloidal scales, whereas strong elasticity-mediated interactions drive the formation of chains and crystals in nematic colloids6-11. To have a structure with few or no symmetry operations apart from trivial ones has so far been demonstrated to be a property of solids alone1, but not of their fully fluid condensed matter counterparts, even though such symmetries have been considered theoretically12-15 and observed in magnetic colloids16. Here we show that dispersing highly anisotropic charged colloidal disks in a nematic host composed of molecular rods provides a platform for observing many low-symmetry phases. Depending on the temperature, concentration and surface charge of the disks, we find nematic, smectic and columnar organizations with symmetries ranging from uniaxial1,2 to orthorhombic17-21 and monoclinic12-15. With increasing temperature, we observe unusual transitions from less- to more-ordered states and re-entrant22 phases. Most importantly, we demonstrate the presence of reconfigurable monoclinic colloidal nematic order, as well as the possibility of thermal and magnetic control of low-symmetry self-assembly2,23,24. Our experimental findings are supported by theoretical modelling of the colloidal interactions between disks in the nematic host and may provide a route towards realizing many low-symmetry condensed matter phases in systems with building blocks of dissimilar shapes and sizes, as well as their technological applications.

2.
Proc Natl Acad Sci U S A ; 121(18): e2322710121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652740

RESUMO

Many living and artificial systems show similar emergent behavior and collective motions on different scales, starting from swarms of bacteria to synthetic active particles, herds of mammals, and crowds of people. What all these systems often have in common is that new collective properties like flocking emerge from interactions between individual self-propelled or driven units. Such systems are naturally out-of-equilibrium and propel at the expense of consumed energy. Mimicking nature by making self-propelled or externally driven particles and studying their individual and collective motility may allow for deeper understanding of physical underpinnings behind collective motion of large groups of interacting objects or beings. Here, using a soft matter system of colloids immersed into a liquid crystal, we show that resulting so-called nematoelastic multipoles can be set into a bidirectional locomotion by external oscillating electric fields. Out-of-equilibrium elastic interactions between such colloidal objects lead to collective flock-like behaviors emerging from time-varying elasticity-mediated interactions between externally driven propelling particles. Repulsive elastic interactions in the equilibrium state can be turned into attractive interactions in the out-of-equilibrium state under applied external electric fields. We probe this behavior at different number densities of colloidal particles and show that particles in dense dispersions collectively select the same direction of a coherent motion due to elastic interactions between near neighbors. In our experimentally implemented design, their motion is highly ordered and without clustering or jamming often present in other colloidal transport systems, which is promising for technological and fundamental-science applications, like nano-cargo transport, out-of-equilibrium assembly, and microrobotics.

3.
Nature ; 570(7760): 214-218, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142843

RESUMO

Monopole-like electrostatic interactions are ubiquitous in biology1 and condensed matter2-4, but they are often screened by counter-ions and cannot be switched from attractive to repulsive. In colloidal science, where the main goal is to develop colloidal particles2,3 that mimic and exceed the diversity and length scales of atomic and molecular assembly, electrostatically charged particles cannot change the sign of their surface charge or transform from monopoles to higher-order multipoles4. In liquid-crystal colloids5-7, elastic interactions between particles arise to minimize the free energy associated with elastic distortions in the long-range alignment of rod-like molecules around the particles5. In dipolar6,8, quadrupolar8-12 and hexadecapolar13 nematic colloids, the symmetries of such elastic distortions mimic both electrostatic multipoles14 and the outermost occupied electron shells of atoms7,15,16. Electric and magnetic switching17,18, spontaneous transformations19 and optical control20 of elastic multipoles, as well as their interactions with topological defects and surface boundary conditions, have been demonstrated in such colloids21-23. However, it has long been understood5,24 that elastic monopoles should relax to uniform or higher-order multipole states because of the elastic torques that they induce5,7. Here we develop nematic colloids with strong elastic monopole moments and with elastic torques balanced by the optical torques induced by ambient light. We demonstrate the monopole-to-quadrupole reconfiguration of these colloidal particles by unstructured light, which resembles the driving of atoms between the ground state and various excited states. We show that the sign of the elastic monopoles can be switched, and that like-charged monopoles attract whereas oppositely charged ones repel, unlike in electrostatics14. We also demonstrate the out-of-equilibrium dynamic assembly of these colloidal particles. This diverse and surprising behaviour is explained using a model that considers the balance of the optical and elastic torques that are responsible for the excited-state elastic monopoles and may lead to light-powered active-matter systems and self-assembled nanomachines.

4.
Proc Natl Acad Sci U S A ; 119(24): e2200930119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671425

RESUMO

Biological functionality is often enabled by a fascinating variety of physical phenomena that emerge from orientational order of building blocks, a defining property of nematic liquid crystals that is also pervasive in nature. Out-of-equilibrium, "living" analogs of these technological materials are found in biological embodiments ranging from myelin sheath of neurons to extracellular matrices of bacterial biofilms and cuticles of beetles. However, physical underpinnings behind manifestations of orientational order in biological systems often remain unexplored. For example, while nematiclike birefringent domains of biofilms are found in many bacterial systems, the physics behind their formation is rarely known. Here, using cellulose-synthesizing Acetobacter xylinum bacteria, we reveal how biological activity leads to orientational ordering in fluid and gel analogs of these soft matter systems, both in water and on solid agar, with a topological defect found between the domains. Furthermore, the nutrient feeding direction plays a role like that of rubbing of confining surfaces in conventional liquid crystals, turning polydomain organization within the biofilms into a birefringent monocrystal-like order of both the extracellular matrix and the rod-like bacteria within it. We probe evolution of scalar orientational order parameters of cellulose nanofibers and bacteria associated with fluid-gel and isotropic-nematic transformations, showing how highly ordered active nematic fluids and gels evolve with time during biological-activity-driven, disorder-order transformation. With fluid and soft-gel nematics observed in a certain range of biological activity, this mesophase-exhibiting system is dubbed "biotropic," analogously to thermotropic nematics that exhibit solely orientational order within a temperature range, promising technological and fundamental-science applications.


Assuntos
Celulose , Gluconacetobacter xylinus , Cristais Líquidos , Celulose/biossíntese , Celulose/química , Géis , Gluconacetobacter xylinus/metabolismo , Cristais Líquidos/química , Água/química
5.
Nat Mater ; 22(1): 64-72, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36456872

RESUMO

Liquid crystals are widely known for their technological uses in displays, electro-optics, photonics and nonlinear optics, but these applications typically rely on defining and switching non-topological spatial patterns of the optical axis. Here, we demonstrate how a liquid crystal's optical axis patterns with singular vortex lines can robustly steer beams of light. External stimuli, including an electric field and light itself, allow us to reconfigure these unusual light-matter interactions. Periodic arrays of vortices obtained by photo-patterning enable the vortex-mediated fission of optical solitons, yielding their lightning-like propagation patterns. Predesigned patterns and spatial trajectories of vortex lines in high-birefringence liquid crystals can steer light into closed loops or even knots. Our vortex lattices might find technological uses in beam steering, telecommunications, virtual reality implementations and anticounterfeiting, as well as possibly offering a model system for probing the interaction of light with defects, including the theoretically predicted, imagination-capturing light-steering action of cosmic strings, elusive defects in cosmology.

6.
Chemistry ; 30(20): e202304366, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38296805

RESUMO

Photoswitching of photoluminescence has sparked tremendous research interests for super-resolution imaging, high-security-level anti-counterfeiting, and other high-tech applications. However, the excitation of photoluminescence is usually ready to trigger the photoswitching process, making the photoluminescence readout unreliable. Herein, we report a new photoswitch by the marriage of spiropyran with platinum(II) coordination complex. Viable photoluminescence can be achieved upon excitation by 480 nm visible light while the photoswitching can be easily triggered by 365 nm UV light. The feasible photoswitching may be benefited from the formed liquid crystalline (LC) phase of the designed photoswitch as a crystalline spiropyran is normally unable to implement photoswitching. Compared to the counterparts, this LC photoswitch can show distinct and reliable apparent colors and emission colors before and after photoswitching, which may promise the utility in high-security-level anti-counterfeiting and other advanced information technologies.

7.
Soft Matter ; 20(8): 1815-1823, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38305433

RESUMO

Polymer stabilized cholesteric liquid crystals (PSCLCs) are electrically reconfigurable reflective elements. Prior studies have hypothesized and indirectly confirmed that the electro-optic response of these composites is associated with the electrically mediated distortion of the stabilizing polymer network. The proposed mechanism is based on the retention of structural chirality in the polymer stabilizing network, which upon deformation is spatially distorted, which accordingly affects the pitch of the surrounding low molar-mass liquid crystal host. Here, we utilize fluorescent confocal polarized microscopy to directly assess the electro-optic response of PSCLCs. By utilizing dual fluorescent probes, sequential imaging experiments confirm that the periodicity of the polymer stabilizing network matches that of the low molar-mass liquid crystal host. Further, we isolate distinct ion-polymer interactions that manifest in certain photopolymerization conditions.

8.
Proc Natl Acad Sci U S A ; 117(12): 6437-6445, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32161127

RESUMO

Malleability of metals is an example of how the dynamics of defects like dislocations induced by external stresses alters material properties and enables technological applications. However, these defects move merely to comply with the mechanical forces applied on macroscopic scales, whereas the molecular and atomic building blocks behave like rigid particles. Here, we demonstrate how motions of crystallites and the defects between them can arise within the soft matter medium in an oscillating electric field applied to a chiral liquid crystal with polycrystalline quasi-hexagonal arrangements of self-assembled topological solitons called "torons." Periodic oscillations of electric field applied perpendicular to the plane of hexagonal lattices prompt repetitive shear-like deformations of the solitons, which synchronize the electrically powered self-shearing directions. The temporal evolution of deformations upon turning voltage on and off is not invariant upon reversal of time, prompting lateral translations of the crystallites of torons within quasi-hexagonal periodically deformed lattices. We probe how these motions depend on voltage and frequency of oscillating field applied in an experimental geometry resembling that of liquid crystal displays. We study the interrelations between synchronized deformations of the soft solitonic particles and their arrays, and the ensuing dynamics and giant number fluctuations mediated by motions of crystallites, five-seven defects pairs, and grain boundaries in the orderly organizations of solitons. We discuss how our findings may lead to technological and fundamental science applications of dynamic self-assemblies of topologically protected but highly deformable particle-like solitons.

9.
Langmuir ; 38(30): 9099-9118, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35866261

RESUMO

Colloidal systems are abundant in technology, in biomedical settings, and in our daily life. The so-called "colloidal atoms" paradigm exploits interparticle interactions to self-assemble colloidal analogs of atomic and molecular crystals, liquid crystal glasses, and other types of condensed matter from nanometer- or micrometer-sized colloidal building blocks. Nematic colloids, which comprise colloidal particles dispersed within an anisotropic nematic fluid host medium, provide a particularly rich variety of physical behaviors at the mesoscale, not only matching but even exceeding the diversity of structural and phase behavior in conventional atomic and molecular systems. This feature article, using primarily examples of works from our own group, highlights recent developments in the design, fabrication, and self-assembly of nematic colloidal particles, including the capabilities of preprogramming their behavior by controlling the particle's surface boundary conditions for liquid crystal molecules at the colloidal surfaces as well as by defining the shape and topology of the colloidal particles. Recent progress in defining particle-induced defects, elastic multipoles, self-assembly, and dynamics is discussed along with open issues and challenges within this research field.

10.
Langmuir ; 38(2): 689-697, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34990137

RESUMO

Colloidal particles in liquid crystals tend to induce topological defects and distortions of the molecular alignment within the surrounding anisotropic host medium, which results in elasticity-mediated interactions not accessible to their counterparts within isotropic fluid hosts. Such particle-induced coronae of perturbed nematic order are highly responsive to external electric fields, even when the uniformly aligned host medium away from particles exhibits no response to fields below the realignment threshold. Here we harness the nonreciprocal nature of these facile electric responses to demonstrate colloidal locomotion. Oscillations of the electric field prompt repetitive deformations of the corona of dipolar elastic distortions around the colloidal inclusions, which upon appropriately designed electric driving synchronize the displacement directions. We observe the colloid-hedgehog dipole accompanied by an umbilical defect in the tilt directionality field (c-field), along with the texture of elastic distortions that evolves with a change in the applied voltage. The temporal out-of-equilibrium evolution of the director and c-field distortions around particles when the voltage is turned on and off is not invariant upon reversal of time, prompting lateral translations and interactions that markedly differ from those accessible to these colloids under equilibrium conditions. Our findings may lead to both technological and fundamental science applications of nematic colloids as both model reconfigurable colloidal systems and as mesostructured materials with predesigned temporal evolution of structure and composition.

11.
Soft Matter ; 17(11): 3037-3046, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33491729

RESUMO

Control of physical behaviors of nematic colloids and colloidal crystals has been demonstrated by tuning particle shape, topology, chirality and surface charging. However, the capability of altering physical behaviors of such soft matter systems by changing particle shape and the ensuing responses to external stimuli has remained elusive. We fabricated genus-one nematic elastomeric colloidal ring-shaped particles and various microstructures using two-photon photopolymerization. Nematic ordering within both the nano-printed particle and the surrounding medium leads to anisotropic responses and actuation when heated. With the thermal control, elastomeric microstructures are capable of changing from genus-one to genus-zero surface topology. Using these particles as building blocks, we investigated elastomeric colloidal crystals immersed within a liquid crystal fluid, which exhibit crystallographic symmetry transformations. Our findings may lead to colloidal crystals responsive to a large variety of external stimuli, including electric fields and light. Pre-designed response of elastomeric nematic colloids, including changes of colloidal surface topology and lattice symmetry, are of interest for both fundamental research and applications.

12.
Proc Natl Acad Sci U S A ; 115(5): 921-926, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29343649

RESUMO

Liquid crystals are widely known for their facile responses to external fields, which forms a basis of the modern information display technology. However, switching of molecular alignment field configurations typically involves topologically trivial structures, although singular line and point defects often appear as short-lived transient states. Here, we demonstrate electric and magnetic switching of nonsingular solitonic structures in chiral nematic and ferromagnetic liquid crystals. These topological soliton structures are characterized by Hopf indices, integers corresponding to the numbers of times that closed-loop-like spatial regions (dubbed "preimages") of two different single orientations of rod-like molecules or magnetization are linked with each other. We show that both dielectric and ferromagnetic response of the studied material systems allow for stabilizing a host of topological solitons with different Hopf indices. The field transformations during such switching are continuous when Hopf indices remain unchanged, even when involving transformations of preimages, but discontinuous otherwise.

13.
Nano Lett ; 20(11): 7835-7843, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124422

RESUMO

Doping of nematic liquid crystals with colloidal nanoparticles presents a rich soft matter platform for controlling material properties and discovering diverse condensed matter phases. We describe nematic nanocolloids that simultaneously exhibit strong electrostatic monopole and dipole moments and yield competing long-range anisotropic interactions. Combined with interactions due to orientational elasticity and order parameter gradients of the nematic host medium, they lead to diverse forms of self-assembly both in the bulk of an aligned liquid crystal and when one-dimensionally confined by singular topological defect lines. Such nanocolloids exhibit facile responses to electric fields. We demonstrate electric reconfigurations of nanocolloidal pair-interactions and discuss how our findings may lead to realizing ferroelectric and dielectric molecular-colloidal fluids with different point group symmetries.

14.
Rep Prog Phys ; 83(10): 106601, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32721944

RESUMO

Humankind has been obsessed with knots in religion, culture and daily life for millennia, while physicists like Gauss, Kelvin and Maxwell already involved them in models centuries ago. Nowadays, colloidal particles can be fabricated to have shapes of knots and links with arbitrary complexity. In liquid crystals, closed loops of singular vortex lines can be knotted by using colloidal particles and laser tweezers, as well as by confining nematic fluids into micrometer-sized droplets with complex topology. Knotted and linked colloidal particles induce knots and links of singular defects, which can be interlinked (or not) with colloidal particle knots, revealing the diversity of interactions between topologies of knotted fields and topologically nontrivial surfaces of colloidal objects. Even more diverse knotted structures emerge in nonsingular molecular alignment and magnetization fields in liquid crystals and colloidal ferromagnets. The topological solitons include hopfions, skyrmions, heliknotons, torons and other spatially localized continuous structures, which are classified based on homotopy theory, characterized by integer-valued topological invariants and often contain knotted or linked preimages, nonsingular regions of space corresponding to single points of the order parameter space. A zoo of topological solitons in liquid crystals, colloids and ferromagnets promises new breeds of information displays and a plethora of data storage, electro-optic and photonic applications. Their particle-like collective dynamics echoes coherent motions in active matter, ranging from crowds of people to schools of fish. This review discusses the state of the art in the field, as well as highlights recent developments and open questions in physics of knotted soft matter. We systematically overview knotted field configurations, the allowed transformations between them, their physical stability and how one can use one form of knotted fields to model, create and imprint other forms. The large variety of symmetries accessible to liquid crystals and colloids offer insights into stability, transformation and emergent dynamics of fully nonsingular and singular knotted fields of fundamental and applied importance. The common thread of this review is the ability to experimentally visualize these knots in real space. The review concludes with a discussion of how the studies of knots in liquid crystals and colloids can offer insights into topologically related structures in other branches of physics, with answers to many open questions, as well as how these experimentally observable knots hold a strong potential for providing new inspirations to the mathematical knot theory.

15.
Opt Express ; 28(23): 34237-34245, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182897

RESUMO

Assembly of plasmonic nanomaterials into a low refractive index medium, such as an aerogel, holds a great promise for optical metamaterials, optical sensors, and photothermal energy converters. However, conventional plasmonic aerogels are opaque and optically isotropic composites, impeding them from being used as low-loss or polarization-dependent optical materials. Here we demonstrate a plasmonic-cellulose nanofiber composite aerogel that comprises of well-dispersed gold nanorods within a cellulose nanofiber network. The cellulose aerogel host is highly transparent owing to the small scattering cross-section of the nanofibers and forms a nematic liquid crystalline medium with strong optical birefringence. We find that the longitudinal surface plasmon resonance peak of gold nanorods shows a dramatic shift when probed for the cellulose aerogel compared with the wet gels. Simulations reveal the shift of surface plasmon resonance peak with gel drying can be attributed to the change of the effective refractive index of the gels. This composite material may provide a platform for three- dimensional plasmonic devices ranging from optical sensors to metamaterials.

16.
Opt Express ; 28(5): 6306-6319, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225882

RESUMO

Light provides a powerful means of controlling physical behavior of materials but is rarely used to power and guide active matter systems. We demonstrate optical control of liquid crystalline topological solitons dubbed "skyrmions", which recently emerged as highly reconfigurable inanimate active particles capable of exhibiting emergent collective behaviors like schooling. Because of a chiral nematic liquid crystal's natural tendency to twist and its facile response to electric fields and light, it serves as a testbed for dynamic control of skyrmions and other active particles. Using ambient-intensity unstructured light, we demonstrate large-scale multifaceted reconfigurations and unjamming of collective skyrmion motions powered by oscillating electric fields and guided by optically-induced obstacles and patterned illumination.

17.
Opt Express ; 28(4): 5459-5469, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121766

RESUMO

We study the plasmon-enhanced fluorescence of a single semiconducting quantum dot near the apex of a colloidal gold pyramid spatially localized by the elastic forces of the liquid crystal host. The gold pyramid particles were manipulated within the liquid crystal medium by laser tweezers, enabling the self-assembly of a semiconducting quantum dot dispersed in the medium near the apex of the gold pyramid, allowing us to probe the plasmon-exciton interactions. We demonstrate the effect of plasmon coupling on the fluorescence lifetime and the blinking properties of the quantum dot. Our results demonstrate that topological defects around colloidal particles in liquid crystal combined with laser tweezers provide a platform for plasmon exciton interaction studies and potentially could be extended to the scale of composite materials for nanophotonic applications.

18.
Phys Rev Lett ; 125(7): 077801, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857571

RESUMO

We experimentally and numerically show that chirality can play a major role in the nonlinear optical response of soft birefringent materials, by studying the nonlinear propagation of laser beams in frustrated cholesteric liquid crystal samples. Such beams exhibit a periodic nonlinear response associated with a bouncing pattern for the optical fields, as well as a self-focusing effect enhanced by the chirality of the birefringent material. Our results open new possible designs of nonlinear optical devices with low power consumption and tunable interactions with localized topological solitons.

19.
Phys Rev Lett ; 125(5): 057201, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794865

RESUMO

Three-dimensional topological solitons attract a great deal of interest in fields ranging from particle physics to cosmology, but remain experimentally elusive in solid-state magnets. Here we numerically predict magnetic heliknotons, an embodiment of such nonzero-Hopf-index solitons localized in all spatial dimensions while embedded in a helical or conical background of chiral magnets. We describe conditions under which heliknotons emerge as metastable or ground-state localized nonsingular structures with fascinating knots of magnetization field in widely studied materials. We demonstrate magnetic control of three-dimensional spatial positions of such solitons, as well as show how they interact to form moleculelike clusters and possibly even crystalline phases comprising three-dimensional lattices of such solitons with both orientational and positional order. Finally, we discuss both fundamental importance and potential technological utility of magnetic heliknotons.

20.
Soft Matter ; 16(11): 2669-2682, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-31898713

RESUMO

Topological solitons are non-singular but topologically nontrivial structures in fields, which have fundamental significance across various areas of physics, similar to singular defects. Production and observation of singular and solitonic topological structures remain a complex undertaking in most branches of science - but in soft matter physics, they can be realized within the director field of a liquid crystal. Additionally, it has been shown that confining liquid crystals to spherical shells using microfluidics resulted in a versatile experimental platform for the dynamical study of topological transformations between director configurations. In this work, we demonstrate the triggered formation of topological solitons, cholesteric fingers, singular defect lines and related structures in liquid crystal shells. We show that to accommodate these objects, shells must possess a Janus nature, featuring both twisted and untwisted domains. We report the formation of linear and axisymmetric objects, which we identify as cholesteric fingers and skyrmions or elementary torons, respectively. We then take advantage of the sensitivity of shells to numerous external stimuli to induce dynamical transitions between various types of structures, allowing for a richer phenomenology than traditional liquid crystal cells with solid flat walls. Using gradually more refined experimental techniques, we induce the targeted transformation of cholesteric twist walls and fingers into skyrmions and elementary torons. We capture the different stages of these director transformations using numerical simulations. Finally, we uncover an experimental mechanism to nucleate arrays of axisymmetric structures on shells, thereby creating a system of potential interest for tackling crystallography studies on curved spaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA