Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 349: 119518, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944321

RESUMO

This forecasting approach may be useful for water managers and associated public health managers to predict near-term future high-risk cyanobacterial harmful algal blooms (cyanoHAB) occurrence. Freshwater cyanoHABs may grow to excessive concentrations and cause human, animal, and environmental health concerns in lakes and reservoirs. Knowledge of the timing and location of cyanoHAB events is important for water quality management of recreational and drinking water systems. No quantitative tool exists to forecast cyanoHABs across broad geographic scales and at regular intervals. Publicly available satellite monitoring has proven effective in detecting cyanobacteria biomass near-real time within the United States. Weekly cyanobacteria abundance was quantified from the Ocean and Land Colour Instrument (OLCI) onboard the Sentinel-3 satellite as the response variable. An Integrated Nested Laplace Approximation (INLA) hierarchical Bayesian spatiotemporal model was applied to forecast World Health Organization (WHO) recreation Alert Level 1 exceedance >12 µg L-1 chlorophyll-a with cyanobacteria dominance for 2192 satellite resolved lakes in the United States across nine climate zones. The INLA model was compared against support vector classifier and random forest machine learning models; and Dense Neural Network, Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Gneural Network (GNU) neural network models. Predictors were limited to data sources relevant to cyanobacterial growth, readily available on a weekly basis, and at the national scale for operational forecasting. Relevant predictors included water surface temperature, precipitation, and lake geomorphology. Overall, the INLA model outperformed the machine learning and neural network models with prediction accuracy of 90% with 88% sensitivity, 91% specificity, and 49% precision as demonstrated by training the model with data from 2017 through 2020 and independently assessing predictions with data from the 2021 calendar year. The probability of true positive responses was greater than false positive responses and the probability of true negative responses was less than false negative responses. This indicated the model correctly assigned lower probabilities of events when they didn't exceed the WHO Alert Level 1 threshold and assigned higher probabilities when events did exceed the threshold. The INLA model was robust to missing data and unbalanced sampling between waterbodies.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Estados Unidos , Humanos , Lagos/microbiologia , Teorema de Bayes , Cianobactérias/fisiologia , Qualidade da Água , Monitoramento Ambiental
2.
Environ Model Softw ; 176: 1-14, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38994237

RESUMO

The first phase of a national scale Soil and Water Assessment Tool (SWAT) model calibration effort at the HUC12 (Hydrologic Unit Code 12) watershed scale was demonstrated over the Mid-Atlantic Region (R02), consisting of 3036 HUC12 subbasins. An R-programming based tool was developed for streamflow calibration including parallel processing for SWAT-CUP (SWAT- Calibration and Uncertainty Programs) to streamline the computational burden of calibration. Successful calibration of streamflow for 415 gages (KGE ≥0.5, Kling-Gupta efficiency; PBIAS ≤15%, Percent Bias) out of 553 selected monitoring gages was achieved in this study, yielding calibration parameter values for 2106 HUC12 subbasins. Additionally, 67 more gages were calibrated with relaxed PBIAS criteria of 25%, yielding calibration parameter values for an additional 150 HUC12 subbasins. This first phase of calibration across R02 increases the reliability, uniformity, and replicability of SWAT-related hydrological studies. Moreover, the study presents a comprehensive approach for efficiently optimizing large-scale multi-site calibration.

3.
Environ Model Softw ; 149: 1-15, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35310371

RESUMO

We developed statistical models to generate runoff time-series at National Hydrography Dataset Plus Version 2 (NHDPlusV2) catchment scale for the Continental United States (CONUS). The models use Normalized Difference Vegetation Index (NDVI) based Curve Number (CN) to generate initial runoff time-series which then is corrected using statistical models to improve accuracy. We used the North American Land Data Assimilation System 2 (NLDAS-2) catchment scale runoff time-series as the reference data for model training and validation. We used 17 years of 16-day, 250-m resolution NDVI data as a proxy for hydrologic conditions during a representative year to calculate 23 NDVI based-CN (NDVI-CN) values for each of 2.65 million NHDPlusV2 catchments for the Contiguous U.S. To maximize predictive accuracy while avoiding optimistically biased model validation results, we developed a spatio-temporal cross-validation framework for estimating, selecting, and validating the statistical correction models. We found that in many of the physiographic sections comprising CONUS, even simple linear regression models were highly effective at correcting NDVI-CN runoff to achieve Nash-Sutcliffe Efficiency values above 0.5. However, all models showed poor performance in physiographic sections that experience significant snow accumulation.

4.
Environ Model Softw ; 1272020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33746558

RESUMO

The Piscine Stream Community Estimation System (PiSCES) provides users with a hypothesized fish community for any stream reach in the conterminous United States using information obtained from Nature Serve, the US Geological Survey (USGS), StreamCat, and the Peterson Field Guide to Freshwater Fishes of North America for over 1000 native and non-native freshwater fish species. PiSCES can filter HUC8-based fish assemblages based on species-specific occurrence models; create a community abundance/biomass distribution by relating relative abundance to mean body weight of each species; and allow users to query its database to see ancillary characteristics of each species (e.g., habitat preferences and maximum size). Future efforts will aim to improve the accuracy of the species distribution database and refine/augment increase the occurrence models. The PiSCES tool is accessible at the EPA's Quantitative Environmental Domain (QED) website at https://qed.epacdx.net/pisces/.

5.
J Am Water Resour Assoc ; 56(3): 486-506, 2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-33424224

RESUMO

Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in hydrological modeling; however, these data have not been fully evaluated across a range of conditions. We compared four gridded datasets (Daily Surface Weather and Climatological Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land Data Assimilation System [GLDAS], and Parameter-elevation Regressions on Independent Slopes Model [PRISM]) as precipitation data sources and evaluated how they affected hydrologic model performance when compared with a gauged dataset, Global Historical Climatology Network-Daily (GHCN-D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN-D, whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in streamflow simulation. For stations with complete data, GHCN-D based SWAT-simulated streamflow variability better than gridded precipitation data. During low flow periods we found PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow years. Our results demonstrate that combining gridded precipitation sources with gauge-based measurements can improve hydrologic model performance, especially for extreme events.

6.
Sci Total Environ ; 822: 153568, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35114225

RESUMO

Reservoirs are dominant features of the modern hydrologic landscape and provide vital services. However, the unique morphology of reservoirs can create suitable conditions for excessive algae growth and associated cyanobacteria blooms in shallow in-flow reservoir locations by providing warm water environments with relatively high nutrient inputs, deposition, and nutrient storage. Cyanobacteria harmful algal blooms (cyanoHAB) are costly water management issues and bloom recurrence is associated with economic costs and negative impacts to human, animal, and environmental health. As cyanoHAB occurrence varies substantially within different regions of a water body, understanding in-lake cyanoHAB spatial dynamics is essential to guide reservoir monitoring and mitigate potential public exposure to cyanotoxins. Cloud-based computational processing power and high temporal frequency of satellites enables advanced pixel-based spatial analysis of cyanoHAB frequency and quantitative assessment of reservoir headwater in-flows compared to near-dam surface waters of individual reservoirs. Additionally, extensive spatial coverage of satellite imagery allows for evaluation of spatial trends across many dozens of reservoir sites. Surface water cyanobacteria concentrations for sixty reservoirs in the southern U.S. were estimated using 300 m resolution European Space Agency (ESA) Ocean and Land Colour Instrument (OLCI) satellite sensor for a five year period (May 2016-April 2021). Of the reservoirs studied, spatial analysis of OLCI data revealed 98% had more frequent cyanoHAB occurrence above the concentration of >100,000 cells/mL in headwaters compared to near-dam surface waters (P < 0.001). Headwaters exhibited greater seasonal variability with more frequent and higher magnitude cyanoHABs occurring mid-summer to fall. Examination of reservoirs identified extremely high concentration cyanobacteria events (>1,000,000 cells/mL) occurring in 70% of headwater locations while only 30% of near-dam locations exceeded this threshold. Wilcoxon signed-rank tests of cyanoHAB magnitudes using paired-observations (dates with observations in both a reservoir's headwater and near-dam locations) confirmed significantly higher concentrations in headwater versus near-dam locations (p < 0.001).


Assuntos
Cianobactérias , Monitoramento Ambiental , Proliferação Nociva de Algas , Hidrologia , Lagos , Imagens de Satélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA