Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 79, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705966

RESUMO

Although human females appear be at a higher risk of concussion and suffer worse outcomes than males, underlying mechanisms remain unclear. With increasing recognition that damage to white matter axons is a key pathologic substrate of concussion, we used a clinically relevant swine model of concussion to explore potential sex differences in the extent of axonal pathologies. At 24 h post-injury, female swine displayed a greater number of swollen axonal profiles and more widespread loss of axonal sodium channels than males. Axon degeneration for both sexes appeared to be related to individual axon architecture, reflected by a selective loss of small caliber axons after concussion. However, female brains had a higher percentage of small caliber axons, leading to more extensive axon loss after injury compared to males. Accordingly, sexual dimorphism in axonal size is associated with more extensive axonal pathology in females after concussion, which may contribute to worse outcomes.


Assuntos
Axônios , Concussão Encefálica , Modelos Animais de Doenças , Caracteres Sexuais , Animais , Feminino , Axônios/patologia , Concussão Encefálica/patologia , Masculino , Suínos , Encéfalo/patologia
2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34234016

RESUMO

Damage to the microtubule lattice, which serves as a rigid cytoskeletal backbone for the axon, is a hallmark mechanical initiator of pathophysiology after concussion. Understanding the mechanical stress transfer from the brain tissue to the axonal cytoskeleton is essential to determine the microtubule lattice's vulnerability to mechanical injury. Here, we develop an ultrastructural model of the axon's cytoskeletal architecture to identify the components involved in the dynamic load transfer during injury. Corroborative in vivo studies were performed using a gyrencephalic swine model of concussion via single and repetitive head rotational acceleration. Computational analysis of the load transfer mechanism demonstrates that the myelin sheath and the actin/spectrin cortex play a significant role in effectively shielding the microtubules from tissue stress. We derive failure maps in the space spanned by tissue stress and stress rate to identify physiological conditions in which the microtubule lattice can rupture. We establish that a softer axonal cortex leads to a higher susceptibility of the microtubules to failure. Immunohistochemical examination of tissue from the swine model of single and repetitive concussion confirms the presence of postinjury spectrin degradation, with more extensive pathology observed following repetitive injury. Because the degradation of myelin and spectrin occurs over weeks following the first injury, we show that softening of the myelin layer and axonal cortex exposes the microtubules to higher stress during repeated incidences of traumatic brain injuries. Our predictions explain how mechanical injury predisposes axons to exacerbated responses to repeated injuries, as observed in vitro and in vivo.


Assuntos
Axônios/metabolismo , Concussão Encefálica/patologia , Lesões Encefálicas/patologia , Modelos Biológicos , Bainha de Mielina/metabolismo , Espectrina/metabolismo , Animais , Humanos , Masculino , Microtúbulos/metabolismo , Pessoa de Meia-Idade , Proteólise , Suínos , Substância Branca/patologia
3.
Neurocrit Care ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443709

RESUMO

BACKGROUND: Early posttraumatic brain injury (TBI) tranexamic acid (TXA) may reduce blood-brain barrier (BBB) permeability, but it is unclear if this effect is fixed regardless of dose. We hypothesized that post-TBI TXA demonstrates a dose-dependent reduction of in vivo penumbral leukocyte mobilization, BBB microvascular permeability, and enhancement of neuroclinical recovery. METHODS: CD1 male mice (n = 40) were randomly assigned to TBI by controlled cortical impact (injury [I]) or sham TBI (S), followed by intravenous bolus of either saline (placebo [P]) or TXA (15, 30, or 60 mg/kg). At 48 h, in vivo pial intravital microscopy visualized live penumbral BBB microvascular leukocytes and albumin leakage. Neuroclinical recovery was assessed by Garcia Neurological Test scores and animal weight changes at 24 h and 48 h after injury. RESULTS: I + TXA60 reduced live penumbral leukocyte rolling compared with I + P (p < 0.001) and both lower TXA doses (p = 0.017 vs. I + TXA15, p = 0.012 vs. I + TXA30). Leukocyte adhesion was infrequent and similar across groups. Only I + TXA60 significantly reduced BBB permeability compared with that in the I + P (p = 0.004) group. All TXA doses improved Garcia Test scores relative to I + P at both 24 h and 48 h (p < 0.001 vs. I + P for all at both time points). Mean 24-h body weight loss was greatest in the I + P (- 8.7 ± 1.3%) group and lowest in the I + TXA15 (- 4.4 ± 1.0%, p = 0.051 vs. I + P) group. CONCLUSIONS: Only higher TXA dosing definitively abrogates penumbral leukocyte mobilization, preserving BBB integrity post TBI. Some neuroclinical recovery is observed, even with lower TXA dosing. Better outcomes with higher dose TXA after TBI may occur secondary to blunting of leukocyte-mediated penumbral cerebrovascular inflammation.

4.
Nano Lett ; 22(11): 4315-4324, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588529

RESUMO

Extracellular vesicles (EVs) have attracted enormous attention for their diagnostic and therapeutic potential. However, it has proven challenging to achieve the sensitivity to detect individual nanoscale EVs, the specificity to distinguish EV subpopulations, and a sufficient throughput to study EVs among an enormous background. To address this fundamental challenge, we developed a droplet-based optofluidic platform to quantify specific individual EV subpopulations at high throughput. The key innovation of our platform is parallelization of droplet generation, processing, and analysis to achieve a throughput (∼20 million droplets/min) more than 100× greater than typical microfluidics. We demonstrate that the improvement in throughput enables EV quantification at a limit of detection = 9EVs/µL, a >100× improvement over gold standard methods. Additionally, we demonstrate the clinical potential of this system by detecting human EVs in complex media. Building on this work, we expect this technology will allow accurate quantification of rare EV subpopulations for broad biomedical applications.


Assuntos
Vesículas Extracelulares , Ensaio de Imunoadsorção Enzimática , Humanos , Microfluídica
5.
J Neurochem ; 161(2): 173-186, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35157328

RESUMO

Severe traumatic brain injury (TBI) is associated with high rates of mortality and long-term disability linked to neurochemical abnormalities. Although purine derivatives play important roles in TBI pathogenesis in preclinical models, little is known about potential changes in purine levels and their implications in human TBI. We assessed cerebrospinal fluid (CSF) levels of purines in severe TBI patients as potential biomarkers that predict mortality and long-term dysfunction. This was a cross-sectional study performed in 17 severe TBI patients (Glasgow Coma Scale <8) and 51 controls. Two to 4 h after admission to ICU, patients were submitted to ventricular drainage and CSF collection for quantification of adenine and guanine purine derivatives by HPLC. TBI patients' survival was followed up to 3 days from admission. A neurofunctional assessment was performed through the modified Rankin Scale (mRS) 2 years after ICU admission. Purine levels were compared between control and TBI patients, and between surviving and non-surviving patients. Relative to controls, TBI patients presented increased CSF levels of GDP, guanosine, adenosine, inosine, hypoxanthine, and xanthine. Further, GTP, GDP, IMP, and xanthine levels were different between surviving and non-surviving patients. Among the purines, guanosine was associated with improved mRS (p = 0.042; r = -0.506). Remarkably, GTP displayed predictive value (AUC = 0.841, p = 0.024) for discriminating survival versus non-survival patients up to 3 days from admission. These results support TBI-specific purine signatures, suggesting GTP as a promising biomarker of mortality and guanosine as an indicator of long-term functional disability.


Assuntos
Lesões Encefálicas Traumáticas , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/diagnóstico , Estudos Transversais , Escala de Coma de Glasgow , Guanosina , Guanosina Trifosfato , Humanos , Purinas , Xantina
6.
Acta Neuropathol ; 144(5): 967-985, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36107227

RESUMO

Despite being a major health concern, little is known about the pathophysiological changes that underly concussion. Nonetheless, emerging evidence suggests that selective damage to white matter axons, or diffuse axonal injury (DAI), disrupts brain network connectivity and function. While voltage-gated sodium channels (NaChs) and their anchoring proteins at the nodes of Ranvier (NOR) on axons are key elements of the brain's network signaling machinery, changes in their integrity have not been studied in context with DAI. Here, we utilized a clinically relevant swine model of concussion that induces evolving axonal pathology, demonstrated by accumulation of amyloid precursor protein (APP) across the white matter. Over a two-week follow-up post-concussion with this model, we found widespread loss of NaCh isoform 1.6 (Nav1.6), progressive increases in NOR length, the appearance of void and heminodes and loss of ßIV-spectrin, ankyrin G, and neurofascin 186 or their collective diffusion into the paranode. Notably, these changes were in close proximity, yet distinct from APP-immunoreactive swollen axonal profiles, potentially representing a unique, newfound phenotype of axonal pathology in DAI. Since concussion in humans is non-fatal, the clinical relevance of these findings was determined through examination of post-mortem brain tissue from humans with higher levels of acute traumatic brain injury. Here, a similar loss of Nav1.6 and changes in NOR structures in brain white matter were observed as found in the swine model of concussion. Collectively, this widespread and progressive disruption of NaChs and NOR appears to be a form of sodium channelopathy, which may represent an important substrate underlying brain network dysfunction after concussion.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Anquirinas/análise , Anquirinas/metabolismo , Axônios/patologia , Concussão Encefálica/patologia , Lesões Encefálicas/patologia , Humanos , Isoformas de Proteínas/metabolismo , Nós Neurofibrosos/química , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Sódio/metabolismo , Canais de Sódio/análise , Canais de Sódio/metabolismo , Espectrina/análise , Espectrina/metabolismo , Suínos
7.
J Surg Res ; 280: 196-203, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35994981

RESUMO

INTRODUCTION: Beta-blockers (BB) after traumatic brain injury (TBI) accelerate cognitive recovery weeks after injury. BBs also inhibit leukocyte (LEU) mobilization to the penumbral blood brain barrier (BBB) 48-h after TBI. It is unclear whether the latter effects persist longer and accompany the persistent cognitive improvement. We hypothesized that 2 wk of BB after TBI reduce penumbral BBB leukocyte-endothelial interactions. METHODS: Thirty CD1 mice underwent TBI (controlled cortical impact, CCI: 6 m/s velocity, 1 mm depth, 3 mm diameter) or sham craniotomy followed by i.p. saline (NS) or propranolol (1, 2, 4 mg/kg) every 12 h for 14 d. On day 14, in vivo pial intravital microscopy visualized endothelial-LEU interactions and BBB microvascular leakage. Day 14 Garcia neurological test scores and animal weights were compared to preinjury levels reflecting concurrent clinical recovery. RESULTS: LEU rolling was greatest in CCI + NS when compared to sham (P = 0.03). 4 mg/kg propranolol significantly reduced postCCI LEU rolling down to uninjured sham levels (P = 0.03). LEU adhesion and microvascular permeability were not impacted at this time interval. Untreated injured animals (CCI + NS) scored lower Garcia neurological test and greater weight loss recovery at day 14 when compared to preinjury (P < 0.05). Treatment with higher doses of propranolol (2, 4 mg/kg), improved weight loss recovery (P < 0.001). CONCLUSIONS: LEU rolling alone, was influenced by BB therapy 14 d after TBI suggesting that certain penumbral neuroinflammatory cellular effects of BB therapy after TBI persist up to 2 wk after injury potentially explaining the pervasive beneficial effects of BBs on learning and memory.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Animais , Camundongos , Barreira Hematoencefálica , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Modelos Animais de Doenças , Leucócitos , Propranolol/farmacologia , Propranolol/uso terapêutico , Redução de Peso
8.
Brain ; 143(5): 1572-1587, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32390044

RESUMO

Traumatic brain injury (TBI) is a risk factor for neurodegenerative disease, including chronic traumatic encephalopathy (CTE). Preliminary consensus criteria define the pathognomonic lesion of CTE as patchy tau pathology within neurons and astrocytes at the depths of cortical sulci. However, the specific tau isoform composition and post-translational modifications in CTE remain largely unexplored. Using immunohistochemistry, we performed tau phenotyping of CTE neuropathologies and compared this to a range of tau pathologies, including Alzheimer's disease, primary age-related tauopathy, ageing-related tau astrogliopathy and multiple subtypes of frontotemporal lobar degeneration with tau inclusions. Cases satisfying preliminary consensus diagnostic criteria for CTE neuropathological change (CTE-NC) were identified (athletes, n = 10; long-term survivors of moderate or severe TBI, n = 4) from the Glasgow TBI Archive and Penn Neurodegenerative Disease Brain Bank. In addition, material from a range of autopsy-proven ageing-associated and primary tauopathies in which there was no known history of exposure to TBI was selected as non-injured controls (n = 32). Each case was then stained with a panel of tau antibodies specific for phospho-epitopes (PHF1, CP13, AT100, pS262), microtubule-binding repeat domains (3R, 4R), truncation (Tau-C3) or conformation (GT-7, GT-38) and the extent and distribution of staining assessed. Cell types were confirmed with double immunofluorescent labelling. Results demonstrate that astroglial tau pathology in CTE is composed of 4R-immunoreactive thorn-shaped astrocytes, echoing the morphology and immunophenotype of astrocytes encountered in ageing-related tau astrogliopathy. In contrast, neurofibrillary tangles of CTE contain both 3R and 4R tau, with post-translational modifications and conformations consistent with Alzheimer's disease and primary age-related tauopathy. Our observations establish that the astroglial and neurofibrillary tau pathologies of CTE are phenotypically distinct from each other and recapitulate the tau immunophenotypes encountered in ageing and Alzheimer's disease. As such, the immunohistochemical distinction of CTE neuropathology from other mixed 3R/4R tauopathies of Alzheimer's disease and ageing may rest solely on the pattern and distribution of pathology.


Assuntos
Astrócitos/patologia , Encéfalo/patologia , Encefalopatia Traumática Crônica/patologia , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Encefalopatia Traumática Crônica/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo , Isoformas de Proteínas/metabolismo
9.
Biophys J ; 119(7): 1290-1300, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027609

RESUMO

Diffuse axonal injury is a primary neuropathological feature of concussion and is thought to greatly contribute to the classical symptoms of decreased processing speed and memory dysfunction. Although previous studies have investigated the injury biomechanics at the micro- and mesoscale of concussion, few have addressed the multiscale transmission of mechanical loading at thresholds that can induce diffuse axonal injury. Because it has been recognized that axonal pathology is commonly found at anatomic interfaces across all severities of traumatic brain injury, we combined computational, analytical, and experimental approaches to investigate the potential mechanical vulnerability of axons that span the gray-white tissue interface. Our computational models predict that material heterogeneities at the gray-white interface lead to a highly nonuniform distribution of stress in axons, which was most amplified in axonal regions near the interface. This mechanism was confirmed using an analytical model of an individual fiber in a strained bimaterial interface. Comparisons of these collective data with histopathological evaluation of a swine model of concussion demonstrated a notably similar pattern of axonal damage adjacent to the gray-white interface. The results suggest that the tissue property mismatch at the gray-white matter interface places axons crossing this region at greater risk of mechanical damage during brain tissue deformation from traumatic brain injury.


Assuntos
Substância Branca , Animais , Axônios , Encéfalo , Córtex Cerebral , Substância Cinzenta , Suínos
10.
Acta Neuropathol ; 138(3): 389-399, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31152201

RESUMO

Chronic traumatic encephalopathy (CTE) is reported at high prevalence in selected autopsy case series of former contact sports athletes. Nevertheless, the contribution of CTE pathology to clinical presentation and its interaction with co-morbid neurodegenerative pathologies remain unclear. To address these issues, we performed comprehensive neuropathology assessments on the brains of former athletes with dementia and considered these findings together with detailed clinical histories to derive an integrated clinicopathological diagnosis for each case. Consecutive, autopsy-acquired brains from former soccer and rugby players with dementia were assessed for neurodegenerative pathologies using established and preliminary consensus protocols. Thereafter, next of kin interviews were conducted to obtain detailed accounts of the patient's clinical presentation and course of disease to inform a final, integrated clinicopathological diagnosis. Neuropathologic change consistent with CTE (CTE-NC) was confirmed in five of seven former soccer and three of four former rugby players' brains, invariably in combination with mixed, often multiple neurodegenerative pathologies. However, in just three cases was the integrated dementia diagnosis consistent with CTE, the remainder having alternate diagnoses, with the most frequent integrated diagnosis Alzheimer's disease (AD) (four cases; one as mixed AD and vascular dementia). This consecutive autopsy series identifies neuropathologic change consistent with preliminary diagnostic criteria for CTE (CTE-NC) in a high proportion of former soccer and rugby players dying with dementia. However, in the majority, CTE-NC appears as a co-morbidity rather than the primary, dementia causing pathology. As such, we suggest that while CTE-NC might be common in former athletes with dementia, in many cases its clinical significance remains uncertain.


Assuntos
Traumatismos em Atletas/patologia , Encefalopatia Traumática Crônica/complicações , Encefalopatia Traumática Crônica/patologia , Demência/epidemiologia , Idoso , Traumatismos em Atletas/complicações , Comorbidade , Futebol Americano/lesões , Humanos , Masculino , Pessoa de Meia-Idade , Futebol/lesões
11.
Brain ; 141(9): 2685-2699, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084913

RESUMO

Traumatic brain injury is a risk factor for subsequent neurodegenerative disease, including chronic traumatic encephalopathy, a tauopathy mostly associated with repetitive concussion and blast, but not well recognized as a consequence of severe traumatic brain injury. Here we show that a single severe brain trauma is associated with the emergence of widespread hyperphosphorylated tau pathology in a proportion of humans surviving late after injury. In parallel experimental studies, in a model of severe traumatic brain injury in wild-type mice, we found progressive and widespread tau pathology, replicating the findings in humans. Brain homogenates from these mice, when inoculated into the hippocampus and overlying cerebral cortex of naïve mice, induced widespread tau pathology, synaptic loss, and persistent memory deficits. These data provide evidence that experimental brain trauma induces a self-propagating tau pathology, which can be transmitted between mice, and call for future studies aimed at investigating the potential transmissibility of trauma associated tau pathology in humans.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Tauopatias/etiologia , Tauopatias/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Concussão Encefálica/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doenças Neurodegenerativas/patologia , Fosforilação , Proteínas tau/metabolismo , Proteínas tau/fisiologia
12.
JAMA ; 322(4): 336-347, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31334794

RESUMO

IMPORTANCE: United States government personnel experienced potential exposures to uncharacterized directional phenomena while serving in Havana, Cuba, from late 2016 through May 2018. The underlying neuroanatomical findings have not been described. OBJECTIVE: To examine potential differences in brain tissue volume, microstructure, and functional connectivity in government personnel compared with individuals not exposed to directional phenomena. DESIGN, SETTING, AND PARTICIPANTS: Forty government personnel (patients) who were potentially exposed and experienced neurological symptoms underwent evaluation at a US academic medical center from August 21, 2017, to June 8, 2018, including advanced structural and functional magnetic resonance imaging analytics. Findings were compared with imaging findings of 48 demographically similar healthy controls. EXPOSURES: Potential exposure to uncharacterized directional phenomena of unknown etiology, manifesting as pressure, vibration, or sound. MAIN OUTCOMES AND MEASURES: Potential imaging-based differences between patients and controls with regard to (1) white matter and gray matter total and regional brain volumes, (2) cerebellar tissue microstructure metrics (eg, mean diffusivity), and (3) functional connectivity in the visuospatial, auditory, and executive control subnetworks. RESULTS: Imaging studies were completed for 40 patients (mean age, 40.4 years; 23 [57.5%] men; imaging performed a median of 188 [range, 4-403] days after initial exposure) and 48 controls (mean age, 37.6 years; 33 [68.8%] men). Mean whole brain white matter volume was significantly smaller in patients compared with controls (patients: 542.22 cm3; controls: 569.61 cm3; difference, -27.39 [95% CI, -37.93 to -16.84] cm3; P < .001), with no significant difference in the whole brain gray matter volume (patients: 698.55 cm3; controls: 691.83 cm3; difference, 6.72 [95% CI, -4.83 to 18.27] cm3; P = .25). Among patients compared with controls, there were significantly greater ventral diencephalon and cerebellar gray matter volumes and significantly smaller frontal, occipital, and parietal lobe white matter volumes; significantly lower mean diffusivity in the inferior vermis of the cerebellum (patients: 7.71 × 10-4 mm2/s; controls: 8.98 × 10-4 mm2/s; difference, -1.27 × 10-4 [95% CI, -1.93 × 10-4 to -6.17 × 10-5] mm2/s; P < .001); and significantly lower mean functional connectivity in the auditory subnetwork (patients: 0.45; controls: 0.61; difference, -0.16 [95% CI, -0.26 to -0.05]; P = .003) and visuospatial subnetwork (patients: 0.30; controls: 0.40; difference, -0.10 [95% CI, -0.16 to -0.04]; P = .002) but not in the executive control subnetwork (patients: 0.24; controls: 0.25; difference: -0.016 [95% CI, -0.04 to 0.01]; P = .23). CONCLUSIONS AND RELEVANCE: Among US government personnel in Havana, Cuba, with potential exposure to directional phenomena, compared with healthy controls, advanced brain magnetic resonance imaging revealed significant differences in whole brain white matter volume, regional gray and white matter volumes, cerebellar tissue microstructural integrity, and functional connectivity in the auditory and visuospatial subnetworks but not in the executive control subnetwork. The clinical importance of these differences is uncertain and may require further study.


Assuntos
Encéfalo/patologia , Empregados do Governo , Doenças do Sistema Nervoso/diagnóstico por imagem , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Cuba , Imagem de Difusão por Ressonância Magnética , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Doenças do Sistema Nervoso/etiologia , Ruído/efeitos adversos , Tamanho do Órgão , Valores de Referência , Estados Unidos , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
13.
Neurobiol Dis ; 117: 161-169, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859874

RESUMO

Although N-acetylaspartate (NAA) has long been recognized as the most abundant amino acid in neurons by far, its primary role has remained a mystery. Based on its unique tertiary structure, we explored the potential of NAA to modulate aggregation of amyloid-beta (Aß) peptide 1-42 via multiple corroborating aggregation assays along with electron microscopy. Thioflavin-T fluorescence assay demonstrated that at physiological concentrations, NAA substantially inhibited the initiation of Aß fibril formation. In addition, NAA added after 25 min of Aß aggregation was shown to break up preformed fibrils. Electron microscopy analysis confirmed the absence of mature fibrils following NAA treatment. Furthermore, fluorescence correlation spectroscopy and dynamic light scattering measurements confirmed significant reductions in Aß fibril hydrodynamic radius following treatment with NAA. These results suggest that physiological levels of NAA could play an important role in controlling Aß aggregation in vivo where they are both found in the same neuronal compartments.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Amiloide/antagonistas & inibidores , Ácido Aspártico/análogos & derivados , Fragmentos de Peptídeos/antagonistas & inibidores , Agregados Proteicos/efeitos dos fármacos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico/farmacologia , Relação Dose-Resposta a Droga , Humanos , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/fisiologia
15.
Acta Neuropathol ; 135(5): 711-726, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29460006

RESUMO

Although concussion is now recognized as a major health issue, its non-lethal nature has limited characterization of the underlying pathophysiology. In particular, potential neuropathological changes have typically been inferred from non-invasive techniques or post-mortem examinations of severe traumatic brain injury (TBI). Here, we used a swine model of head rotational acceleration based on human concussion to examine blood-brain barrier (BBB) integrity after injury in association with diffuse axonal injury and glial responses. We then determined the potential clinical relevance of the swine concussion findings through comparisons with pathological changes in human severe TBI, where post-mortem examinations are possible. At 6-72 h post-injury in swine, we observed multifocal disruption of the BBB, demonstrated by extravasation of serum proteins, fibrinogen and immunoglobulin-G, in the absence of hemorrhage or other focal pathology. BBB disruption was observed in a stereotyped distribution consistent with biomechanical insult. Specifically, extravasated serum proteins were frequently observed at interfaces between regions of tissue with differing material properties, including the gray-white boundary, periventricular and subpial regions. In addition, there was substantial overlap of BBB disruption with regions of axonal pathology in the white matter. Acute perivascular cellular uptake of blood-borne proteins was observed to be prominent in astrocytes (GFAP-positive) and neurons (MAP-2-positive), but not microglia (IBA1-positive). Parallel examination of human severe TBI revealed similar patterns of serum extravasation and glial uptake of serum proteins, but to a much greater extent than in the swine model, attributed to the higher injury severity. These data suggest that BBB disruption represents a new and important pathological feature of concussion.


Assuntos
Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Adolescente , Adulto , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Biomarcadores/sangue , Fenômenos Biomecânicos , Permeabilidade Capilar , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Suínos , Porco Miniatura , Adulto Jovem
17.
JAMA ; 319(11): 1125-1133, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29450484

RESUMO

Importance: From late 2016 through August 2017, US government personnel serving on diplomatic assignment in Havana, Cuba, reported neurological symptoms associated with exposure to auditory and sensory phenomena. Objective: To describe the neurological manifestations that followed exposure to an unknown energy source associated with auditory and sensory phenomena. Design, Setting, and Participants: Preliminary results from a retrospective case series of US government personnel in Havana, Cuba. Following reported exposure to auditory and sensory phenomena in their homes or hotel rooms, the individuals reported a similar constellation of neurological symptoms resembling brain injury. These individuals were referred to an academic brain injury center for multidisciplinary evaluation and treatment. Exposures: Report of experiencing audible and sensory phenomena emanating from a distinct direction (directional phenomena) associated with an undetermined source, while serving on US government assignments in Havana, Cuba, since 2016. Main Outcomes and Measures: Descriptions of the exposures and symptoms were obtained from medical record review of multidisciplinary clinical interviews and examinations. Additional objective assessments included clinical tests of vestibular (dynamic and static balance, vestibulo-ocular reflex testing, caloric testing), oculomotor (measurement of convergence, saccadic, and smooth pursuit eye movements), cognitive (comprehensive neuropsychological battery), and audiometric (pure tone and speech audiometry) functioning. Neuroimaging was also obtained. Results: Of 24 individuals with suspected exposure identified by the US Department of State, 21 completed multidisciplinary evaluation an average of 203 days after exposure. Persistent symptoms (>3 months after exposure) were reported by these individuals including cognitive (n = 17, 81%), balance (n = 15, 71%), visual (n = 18, 86%), and auditory (n = 15, 68%) dysfunction, sleep impairment (n = 18, 86%), and headaches (n = 16, 76%). Objective findings included cognitive (n = 16, 76%), vestibular (n = 17, 81%), and oculomotor (n = 15, 71%) abnormalities. Moderate to severe sensorineural hearing loss was identified in 3 individuals. Pharmacologic intervention was required for persistent sleep dysfunction (n = 15, 71%) and headache (n = 12, 57%). Fourteen individuals (67%) were held from work at the time of multidisciplinary evaluation. Of those, 7 began graduated return to work with restrictions in place, home exercise programs, and higher-level work-focused cognitive rehabilitation. Conclusions and Relevance: In this preliminary report of a retrospective case series, persistent cognitive, vestibular, and oculomotor dysfunction, as well as sleep impairment and headaches, were observed among US government personnel in Havana, Cuba, associated with reports of directional audible and/or sensory phenomena of unclear origin. These individuals appeared to have sustained injury to widespread brain networks without an associated history of head trauma.


Assuntos
Empregados do Governo , Perda Auditiva Neurossensorial/etiologia , Doenças do Sistema Nervoso/etiologia , Ruído/efeitos adversos , Transtornos Somatoformes/etiologia , Adulto , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico , Concussão Encefálica/etiologia , Cuba , Diagnóstico Diferencial , Feminino , Cefaleia/etiologia , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/reabilitação , Neuroimagem , Testes Neuropsicológicos , Doenças do Nervo Oculomotor/etiologia , Equilíbrio Postural , Transtornos de Sensação/etiologia , Transtornos Somatoformes/diagnóstico , Transtornos Somatoformes/reabilitação , Estados Unidos
18.
Brain Inj ; 31(9): 1168-1176, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981339

RESUMO

As a follow-up to the 2008 state-of-the-art (SOTA) conference on traumatic brain injuries (TBIs), the 2015 event organized by the United States Department of Veterans Affairs (VA) Office of Research and Development (ORD) analysed the knowledge gained over the last 7 years as it relates to basic scientific methods, experimental findings, diagnosis, therapy, and rehabilitation of TBIs and blast-induced neurotraumas (BINTs). The current article summarizes the discussions and recommendations of the scientific panel attending the Preclinical Modeling and Therapeutic Development Workshop of the conference, with special emphasis on factors slowing research progress and recommendations for ways of addressing the most significant pitfalls.


Assuntos
Traumatismos por Explosões/epidemiologia , Lesões Encefálicas Traumáticas/epidemiologia , Modelos Animais de Doenças , Militares , United States Department of Veterans Affairs/tendências , Animais , Traumatismos por Explosões/psicologia , Traumatismos por Explosões/terapia , Lesões Encefálicas Traumáticas/psicologia , Lesões Encefálicas Traumáticas/terapia , Previsões , Humanos , Militares/psicologia , Estados Unidos/epidemiologia
19.
Acta Neuropathol ; 131(1): 115-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26589592

RESUMO

Diffuse axonal injury (DAI) is a common feature of severe traumatic brain injury (TBI) and may also be a predominant pathology in mild TBI or "concussion". The rapid deformation of white matter at the instant of trauma can lead to mechanical failure and calcium-dependent proteolysis of the axonal cytoskeleton in association with axonal transport interruption. Recently, a proteolytic fragment of alpha-II spectrin, "SNTF", was detected in serum acutely following mild TBI in patients and was prognostic for poor clinical outcome. However, direct evidence that this fragment is a marker of DAI has yet to be demonstrated in either humans following TBI or in models of mild TBI. Here, we used immunohistochemistry (IHC) to examine for SNTF in brain tissue following both severe and mild TBI. Human severe TBI cases (survival <7d; n = 18) were compared to age-matched controls (n = 16) from the Glasgow TBI archive. We also examined brains from an established model of mild TBI at 6, 48 and 72 h post-injury versus shams. IHC specific for SNTF was compared to that of amyloid precursor protein (APP), the current standard for DAI diagnosis, and other known markers of axonal pathology including non-phosphorylated neurofilament-H (SMI-32), neurofilament-68 (NF-68) and compacted neurofilament-medium (RMO-14) using double and triple immunofluorescent labeling. Supporting its use as a biomarker of DAI, SNTF immunoreactive axons were observed at all time points following both human severe TBI and in the model of mild TBI. Interestingly, SNTF revealed a subpopulation of degenerating axons, undetected by the gold-standard marker of transport interruption, APP. While there was greater axonal co-localization between SNTF and APP after severe TBI in humans, a subset of SNTF positive axons displayed no APP accumulation. Notably, some co-localization was observed between SNTF and the less abundant neurofilament subtype markers. Other SNTF positive axons, however, did not co-localize with any other markers. Similarly, RMO-14 and NF-68 positive axonal pathology existed independent of SNTF and APP. These data demonstrate that multiple pathological axonal phenotypes exist post-TBI and provide insight into a more comprehensive approach to the neuropathological assessment of DAI.


Assuntos
Transporte Axonal/fisiologia , Axônios/patologia , Lesões Encefálicas/patologia , Encéfalo/patologia , Lesão Axonal Difusa/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Lesões Encefálicas/diagnóstico , Lesão Axonal Difusa/diagnóstico , Imuno-Histoquímica/métodos , Masculino , Proteínas de Neurofilamentos/metabolismo
20.
Biophys J ; 109(11): 2328-37, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26636944

RESUMO

The viscoelastic nature of axons plays a key role in their selective vulnerability to damage in traumatic brain injury (TBI). Experimental studies have shown that although axons can tolerate 100% strain under slow loading rates, even strain as small as 5% can rupture microtubules (MTs) during the fast loading velocities relevant to TBI. Here, we developed a computational model to examine rate-dependent behavior related to dynamic interactions between MTs and the MT-associated protein tau under varying strains and strain rates. In the model, inverted pairs of tau proteins can dynamically cross-link parallel MTs via the respective MT-binding domain of each tau. The model also incorporates realistic thermodynamic breaking and reformation of the bonds between the connected tau proteins as they respond to mechanical stretch. With simulated stretch of the axon, the model shows that despite the highly dynamic nature of binding and unbinding events, under fast loading rates relevant to TBI, large tensile forces can be transmitted to the MTs that can lead to mechanical rupture of the MT cylinder, in agreement with experimental observations and as inferred in human TBI. In contrast, at slow loading rates, the progressive breaking and reformation of the bonds between the tau proteins facilitate the extension of axons up to ∼100% strain without any microstructural damage. The model also predicts that under fast loading rates, individual MTs detach from MT bundles via sequential breaking of the tau-tau bonds. Finally, the model demonstrates that longer MTs are more susceptible to mechanical rupture, whereas short MTs are more prone to detachment from the MT bundle, leading to disintegration of the axonal MT ultrastructure. Notably, the predictions from the model are in excellent agreement with the findings of the recent in vitro mechanical testing of micropatterned neuronal cultures.


Assuntos
Axônios/patologia , Fenômenos Mecânicos , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Fenômenos Biomecânicos , Lesões Encefálicas/patologia , Elasticidade , Humanos , Cinética , Ligação Proteica , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA