RESUMO
High-throughput experiments often produce ranked gene outputs, with forward genetic screening being a notable example. While there are various tools for analyzing individual datasets, those that perform comparative and meta-analytical examination of such ranked gene lists remain scarce. Here, we introduce Gene Rank Meta Analyzer (GeneRaMeN), an R Shiny tool utilizing rank statistics to facilitate the identification of consensus, unique, and correlated genes across multiple hit lists. We focused on two key topics to showcase GeneRaMeN: virus host factors and cancer dependencies. Using GeneRaMeN 'Rank Aggregation', we integrated 24 published and new flavivirus genetic screening datasets, including dengue, Japanese encephalitis, and Zika viruses. This meta-analysis yielded a consensus list of flavivirus host factors, elucidating the significant influence of cell line selection on screening outcomes. Similar analysis on 13 SARS-CoV-2 CRISPR screening datasets highlighted the pivotal role of meta-analysis in revealing redundant biological pathways exploited by the virus to enter human cells. Such redundancy was further underscored using GeneRaMeN's 'Rank Correlation', where a strong negative correlation was observed for host factors implicated in one entry pathway versus the alternate route. Utilizing GeneRaMeN's 'Rank Uniqueness', we analyzed human coronaviruses 229E, OC43, and SARS-CoV-2 datasets, identifying host factors uniquely associated with a defined subset of the screening datasets. Similar analyses were performed on over 1000 Cancer Dependency Map (DepMap) datasets spanning 19 human cancer types to reveal unique cancer vulnerabilities for each organ/tissue. GeneRaMeN, an efficient tool to integrate and maximize the usability of genetic screening datasets, is freely accessible via https://ysolab.shinyapps.io/GeneRaMeN.
Assuntos
Biologia Computacional , Metanálise como Assunto , Software , Humanos , Biologia Computacional/métodos , COVID-19/genética , COVID-19/virologia , Neoplasias/genética , SARS-CoV-2/genética , Conjuntos de Dados como Assunto , Testes Genéticos/estatística & dados numéricosRESUMO
Swine are a primary source for the emergence of pandemic influenza A viruses. The intensification of swine production, along with global trade, has amplified the transmission and zoonotic risk of swine influenza A virus (swIAV). Effective surveillance is essential to uncover emerging virus strains; however gaps remain in our understanding of the swIAV genomic landscape in Southeast Asia. More than 4,000 nasal swabs were collected from pigs in Cambodia, yielding 72 IAV-positive samples by RT-qPCR and 45 genomic sequences. We unmasked the cocirculation of multiple lineages of genetically diverse swIAV of pandemic concern. Genomic analyses revealed a novel European avian-like H1N2 swIAV reassortant variant with North American triple reassortant internal genes, that emerged approximately seven years before its first detection in pigs in 2021. Using phylogeographic reconstruction, we identified south central China as the dominant source of swine viruses disseminated to other regions in China and Southeast Asia. We also identified nine distinct swIAV lineages in Cambodia, which diverged from their closest ancestors between two and 15 B.P., indicating significant undetected diversity in the region, including reverse zoonoses of human H1N1/2009 pandemic and H3N2 viruses. A similar period of cryptic circulation of swIAVs occurred in the decades before the H1N1/2009 pandemic. The hidden diversity of swIAV observed here further emphasizes the complex underlying evolutionary processes present in this region, reinforcing the importance of genomic surveillance at the human-swine interface for early warning of disease emergence to avoid future pandemics.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus Reordenados/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Vírus da Influenza A/genética , Genômica , Filogenia , Camboja/epidemiologia , Doenças dos Suínos/epidemiologiaRESUMO
Transmembrane Protein 41B (TMEM41B) and Vacuole Membrane Protein 1 (VMP1) are two ER-associated lipid scramblases that play a role in autophagosome formation and cellular lipid metabolism. TMEM41B is also a recently validated host factor required by flaviviruses and coronaviruses. However, the exact underlying mechanism of TMEM41B in promoting viral infections remains an open question. Here, we validated that both TMEM41B and VMP1 are essential host dependency factors for all four serotypes of dengue virus (DENV) and human coronavirus OC43 (HCoV-OC43), but not chikungunya virus (CHIKV). While HCoV-OC43 failed to replicate entirely in both TMEM41B- and VMP1-deficient cells, we detected diminished levels of DENV infections in these cell lines, which were accompanied by upregulation of the innate immune dsRNA sensors, RIG-I and MDA5. Nonetheless, this upregulation did not correspondingly induce the downstream effector TBK1 activation and Interferon-beta expression. Despite low levels of DENV replication, classical DENV replication organelles were undetectable in the infected TMEM41B-deficient cells, suggesting that the upregulation of the dsRNA sensors is likely a consequence of aberrant viral replication rather than a causal factor for reduced DENV infection. Intriguingly, we uncovered that the inhibitory effect of TMEM41B deficiency on DENV replication, but not HCoV-OC43, can be partially reversed using exogenous fatty acid supplements. In contrast, VMP1 deficiency cannot be rescued using the metabolite treatment. In line with the observed phenotypes, we found that both TMEM41B- and VMP1-deficient cells harbor higher levels of compromised mitochondria, especially in VMP1 deficiency which results in severe dysregulations of mitochondrial beta-oxidation. Using a metabolomic profiling approach, we revealed distinctive global dysregulations of the cellular metabolome, particularly lipidome, in TMEM41B- and VMP1-deficient cells. Our findings highlight a central role for TMEM41B and VMP1 in modulating multiple cellular pathways, including lipid mobilization, mitochondrial beta-oxidation, and global metabolic regulations, to facilitate the replication of flaviviruses and coronaviruses.
Assuntos
Infecções por Coronavirus , Coronavirus , Dengue , Metabolismo Energético , Humanos , Lipídeos , Proteínas de Membrana/genética , Replicação ViralRESUMO
Influenza B viruses have circulated in humans for over 80 y, causing a significant disease burden. Two antigenically distinct lineages ("B/Victoria/2/87-like" and "B/Yamagata/16/88-like," termed Victoria and Yamagata) emerged in the 1970s and have cocirculated since 2001. Since 2015 both lineages have shown unusually high levels of epidemic activity, the reasons for which are unclear. By analyzing over 12,000 influenza B virus genomes, we describe the processes enabling the long-term success and recent resurgence of epidemics due to influenza B virus. We show that following prolonged diversification, both lineages underwent selective sweeps across the genome and have subsequently taken alternate evolutionary trajectories to exhibit epidemic dominance, with no reassortment between lineages. Hemagglutinin deletion variants emerged concomitantly in multiple Victoria virus clades and persisted through epistatic mutations and interclade reassortment-a phenomenon previously only observed in the 1970s when Victoria and Yamagata lineages emerged. For Yamagata viruses, antigenic drift of neuraminidase was a major driver of epidemic activity, indicating that neuraminidase-based vaccines and cross-reactivity assays should be employed to monitor and develop robust protection against influenza B morbidity and mortality. Overall, we show that long-term diversification and infrequent selective sweeps, coupled with the reemergence of hemagglutinin deletion variants and antigenic drift of neuraminidase, are factors that contributed to successful circulation of diverse influenza B clades. Further divergence of hemagglutinin variants with poor cross-reactivity could potentially lead to circulation of 3 or more distinct influenza B viruses, further complicating influenza vaccine formulation and highlighting the urgent need for universal influenza vaccines.
Assuntos
Doenças Transmissíveis Emergentes/virologia , Epidemias/prevenção & controle , Evolução Molecular , Vírus da Influenza B/genética , Vacinas contra Influenza/uso terapêutico , Influenza Humana/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/imunologia , Doenças Transmissíveis Emergentes/prevenção & controle , Variação Genética , Genoma Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza B/imunologia , Vírus da Influenza B/patogenicidade , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/genética , Neuraminidase/imunologia , Seleção Genética/imunologiaRESUMO
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with a 382-nucleotide deletion (∆382) in the open reading frame 8 (ORF8) region of the genome have been detected in Singapore and other countries. We investigated the effect of this deletion on the clinical features of infection. METHODS: We retrospectively identified patients who had been screened for the ∆382 variant and recruited to the PROTECT study-a prospective observational cohort study conducted at seven public hospitals in Singapore. We collected clinical, laboratory, and radiological data from patients' electronic medical records and serial blood and respiratory samples taken during hospitalisation and after discharge. Individuals infected with the ∆382 variant were compared with those infected with wild-type SARS-CoV-2. Exact logistic regression was used to examine the association between the infection groups and the development of hypoxia requiring supplemental oxygen (an indicator of severe COVID-19, the primary endpoint). Follow-up for the study's primary endpoint is completed. FINDINGS: Between Jan 22 and March 21, 2020, 278 patients with PCR-confirmed SARS-CoV-2 infection were screened for the ∆382 deletion and 131 were enrolled onto the study, of whom 92 (70%) were infected with the wild-type virus, ten (8%) had a mix of wild-type and ∆382-variant viruses, and 29 (22%) had only the ∆382 variant. Development of hypoxia requiring supplemental oxygen was less frequent in the ∆382 variant group (0 [0%] of 29 patients) than in the wild-type only group (26 [28%] of 92; absolute difference 28% [95% CI 14-28]). After adjusting for age and presence of comorbidities, infection with the ∆382 variant only was associated with lower odds of developing hypoxia requiring supplemental oxygen (adjusted odds ratio 0·07 [95% CI 0·00-0·48]) compared with infection with wild-type virus only. INTERPRETATION: The ∆382 variant of SARS-CoV-2 seems to be associated with a milder infection. The observed clinical effects of deletions in ORF8 could have implications for the development of treatments and vaccines. FUNDING: National Medical Research Council Singapore.
Assuntos
Infecções por Coronavirus/virologia , Deleção de Genes , Genoma Viral/genética , Pneumonia Viral/virologia , Adulto , Idoso , Betacoronavirus , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/epidemiologia , Humanos , Hipóxia/etiologia , Hipóxia/terapia , Pessoa de Meia-Idade , Fases de Leitura Aberta , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/epidemiologia , Estudos Prospectivos , Terapia Respiratória , SARS-CoV-2 , Índice de Gravidade de Doença , Singapura/epidemiologia , Replicação ViralRESUMO
Natural reservoir hosts can sustain infection of pathogens without succumbing to overt disease. Multiple bat species host a plethora of viruses, pathogenic to other mammals, without clinical symptoms. Here, we detail infection of bat primary cells, immune cells, and cell lines with Dengue virus. While antibodies and viral RNA were previously detected in wild bats, their ability to sustain infection is not conclusive. Old-world fruitbat cells can be infected, producing high titres of virus with limited cellular responses. In addition, there is minimal interferon (IFN) response in cells infected with MOIs leading to dengue production. The ability to support in vitro replication/production raises the possibility of bats as a transient host in the life cycle of dengue or similar flaviviruses. New antibody serology evidence from Asia/Pacific highlights the previous exposure and raises awareness that bats may be involved in flavivirus dynamics and infection of other hosts.
Assuntos
Quirópteros/virologia , Vírus da Dengue/fisiologia , Dengue/veterinária , Animais , Australásia/epidemiologia , Linhagem Celular , Quirópteros/imunologia , Dengue/epidemiologia , Dengue/imunologia , Vírus da Dengue/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Malásia/epidemiologia , Internalização do VírusRESUMO
Avian influenza A(H9N2) virus isolated from a poultry worker in Pakistan in 2015 was closely related to viruses detected in poultry farms. Observed mutations in the hemagglutinin related to receptor-binding affinity and antigenicity could affect cross-reactivity with prepandemic H9N2 vaccine strains.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H9N2/genética , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Adulto , Animais , Reações Cruzadas , Monitoramento Epidemiológico , Epitopos , Fazendeiros , Humanos , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Humana/epidemiologia , Masculino , Mutação , Paquistão/epidemiologia , Aves Domésticas , ZoonosesRESUMO
BACKGROUND: Human infections with avian influenza viruses (AIV) represent a persistent public health threat. The principal risk factor governing human infection with AIV is from direct contact with infected poultry and is primarily observed in Asia and Egypt where live-bird markets are common. AREAS OF AGREEMENT: Changing patterns of virus transmission and a lack of obvious disease manifestations in avian species hampers early detection and efficient control of potentially zoonotic AIV. AREAS OF CONTROVERSY: Despite extensive studies on biological and environmental risk factors, the exact conditions required for cross-species transmission from avian species to humans remain largely unknown. GROWING POINTS: The development of a universal ('across-subtype') influenza vaccine and effective antiviral therapeutics are a priority. AREAS TIMELY FOR DEVELOPING RESEARCH: Sustained virus surveillance and collection of ecological and physiological parameters from birds in different environments is required to better understand influenza virus ecology and identify risk factors for human infection.
Assuntos
Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Animais , Antivirais/uso terapêutico , Aves , Surtos de Doenças , Suscetibilidade a Doenças , Humanos , Vírus da Influenza A/classificação , Vacinas contra Influenza , Influenza Aviária/terapia , Influenza Aviária/transmissão , Influenza Humana/terapia , Influenza Humana/transmissão , Fatores de Risco , Zoonoses/epidemiologia , Zoonoses/terapia , Zoonoses/transmissãoRESUMO
We characterise the evolutionary dynamics of influenza infection described by viral sequence data collected from two challenge studies conducted in human hosts. Viral sequence data were collected at regular intervals from infected hosts. Changes in the sequence data observed across time show that the within-host evolution of the virus was driven by the reversion of variants acquired during previous passaging of the virus. Treatment of some patients with oseltamivir on the first day of infection did not lead to the emergence of drug resistance variants in patients. Using an evolutionary model, we inferred the effective rate of reassortment between viral segments, measuring the extent to which randomly chosen viruses within the host exchange genetic material. We find strong evidence that the rate of effective reassortment is low, such that genetic associations between polymorphic loci in different segments are preserved during the course of an infection in a manner not compatible with epistasis. Combining our evidence with that of previous studies we suggest that spatial heterogeneity in the viral population may reduce the extent to which reassortment is observed. Our results do not contradict previous findings of high rates of viral reassortment in vitro and in small animal studies, but indicate that in human hosts the effective rate of reassortment may be substantially more limited.
Assuntos
Influenza Humana/virologia , Modelos Genéticos , Orthomyxoviridae/genética , Humanos , Seleção GenéticaRESUMO
BACKGROUND: Although Indonesia has high fatality rate of human A/H5N1 cases, epidemiological and clinical data on influenza virus circulation among humans has been limited. Within Indonesia, Bali province is of interest due to high population densities of humans, pigs and poultry. This study aims to characterize and compare the epidemiological and clinical patterns of influenza viruses in humans through surveillance among patients with influenza-like illness (ILI) in Bali, Indonesia. METHODS: ILI patients were recruited at 21 sentinel health facilities across all nine regencies in Bali, from July 2010 to June 2014. PCR-based assays were used for detection and subtyping of influenza viruses. Demographic, behavioural and clinical data were tested for associations with influenza using chi-squared tests and logistic regression. RESULTS: Of 2077 ILI patients, 291 (14.0%) tested positive for influenza A, 152 (7.3%) for influenza B, and 16 (0.77%) for both influenza A and B. Of the influenza A isolates, the majority 61.2% were A/H3N2, followed by A/H1N1-pdm09 (80; 26.1%). Two A/H5N1 were identified. Influenza positive rates were significantly higher during wet season months (28.3%), compared with the dry season (13.8%; χ2 = 61.1; df = 1; p < 0.0001). Clinical predictors for infection varied by virus type, with measured fever (≥38 °C) more strongly associated with influenza B (AOR: 1.62; 95% CI: 1.10, 2.39). CONCLUSION: Influenza circulates year-round among humans in Bali with higher activity during the wet season. High contact rates with poultry and pigs, along with influenza virus detection that could not be subtyped through conventional assays, highlight the need for molecular studies to characterize epidemiological and evolutionary dynamics of influenza in this setting.
Assuntos
Betainfluenzavirus/genética , Vírus da Influenza A/genética , Influenza Humana/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Indonésia/epidemiologia , Lactente , Recém-Nascido , Vírus da Influenza A/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Betainfluenzavirus/isolamento & purificação , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Estações do Ano , Adulto JovemRESUMO
To determine whether fruit bats in Singapore have been exposed to filoviruses, we screened 409 serum samples from bats of 3 species by using a multiplex assay that detects antibodies against filoviruses. Positive samples reacted with glycoproteins from Bundibugyo, Ebola, and Sudan viruses, indicating filovirus circulation among bats in Southeast Asia.
Assuntos
Quirópteros/sangue , Quirópteros/virologia , Ebolavirus , Marburgvirus , Proteínas do Envelope Viral/sangue , Animais , Glicoproteínas/sangue , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Estudos Soroepidemiológicos , Singapura/epidemiologiaRESUMO
Despite evidence for avian influenza A virus (AIV) transmission between wild and domestic ecosystems, the roles of bird migration and poultry trade in the spread of viruses remain enigmatic. In this study, we integrate ecosystem interactions into a phylogeographic model to assess the contribution of wild and domestic hosts to AIV distribution and persistence. Analysis of globally sampled AIV datasets shows frequent two-way transmission between wild and domestic ecosystems. In general, viral flow from domestic to wild bird populations was restricted to within a geographic region. In contrast, spillover from wild to domestic populations occurred both within and between regions. Wild birds mediated long-distance dispersal at intercontinental scales whereas viral spread among poultry populations was a major driver of regional spread. Viral spread between poultry flocks frequently originated from persistent lineages circulating in regions of intensive poultry production. Our analysis of long-term surveillance data demonstrates that meaningful insights can be inferred from integrating ecosystem into phylogeographic reconstructions that may be consequential for pandemic preparedness and livestock protection.
Assuntos
Aves/virologia , Vírus da Influenza A , Influenza Aviária/epidemiologia , Pandemias/veterinária , Aves Domésticas/virologia , Animais , Animais Selvagens/virologia , Ecossistema , FilogeografiaRESUMO
Knowledge of influenza virus evolution at the point of transmission and at the intrahost level remains limited, particularly for human hosts. Here, we analyze a unique viral data set of next-generation sequencing (NGS) samples generated from a human influenza challenge study wherein 17 healthy subjects were inoculated with cell- and egg-passaged virus. Nasal wash samples collected from 7 of these subjects were successfully deep sequenced. From these, we characterized changes in the subjects' viral populations during infection and identified differences between the virus in these samples and the viral stock used to inoculate the subjects. We first calculated pairwise genetic distances between the subjects' nasal wash samples, the viral stock, and the influenza virus A/Wisconsin/67/2005 (H3N2) reference strain used to generate the stock virus. These distances revealed that considerable viral evolution occurred at various points in the human challenge study. Further quantitative analyses indicated that (i) the viral stock contained genetic variants that originated and likely were selected for during the passaging process, (ii) direct intranasal inoculation with the viral stock resulted in a selective bottleneck that reduced nonsynonymous genetic diversity in the viral hemagglutinin and nucleoprotein, and (iii) intrahost viral evolution continued over the course of infection. These intrahost evolutionary dynamics were dominated by purifying selection. Our findings indicate that rapid viral evolution can occur during acute influenza infection in otherwise healthy human hosts when the founding population size of the virus is large, as is the case with direct intranasal inoculation. IMPORTANCE: Influenza viruses circulating among humans are known to rapidly evolve over time. However, little is known about how influenza virus evolves across single transmission events and over the course of a single infection. To address these issues, we analyze influenza virus sequences from a human challenge experiment that initiated infection with a cell- and egg-passaged viral stock, which appeared to have adapted during its preparation. We find that the subjects' viral populations differ genetically from the viral stock, with subjects' viral populations having lower representation of the amino-acid-changing variants that arose during viral preparation. We also find that most of the viral evolution occurring over single infections is characterized by further decreases in the frequencies of these amino-acid-changing variants and that only limited intrahost genetic diversification through new mutations is apparent. Our findings indicate that influenza virus populations can undergo rapid genetic changes during acute human infections.
Assuntos
Variação Genética , Genoma Viral , Vírus da Influenza A Subtipo H3N2/genética , RNA Viral/genética , Animais , Galinhas , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Influenza Humana/virologia , Modelos Genéticos , Seleção Genética , Zigoto/virologiaRESUMO
Newcastle disease virus (NDV) is an important pathogen in poultry. Waterfowl and a number of other avian species serve as the host for NDV. Severity of the disease is variable and infected animals mainly develop respiratory and neurological symptoms. Outbreaks of NDV in poultry are recorded regularly in the Republic of Kazakhstan despite the widespread use of vaccines. Here we present evidence that nucleic acid found in open water bodies in Kazakhstan can be detected by means of next-generation sequencing and belongs to at least three distinct genotypes of NDV.
Assuntos
Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Animais , Microbiologia Ambiental , Cazaquistão/epidemiologia , Doença de Newcastle/epidemiologia , Filogenia , Aves Domésticas , RNA Viral/genéticaRESUMO
Swine influenza A viruses (SwIV) cause significant economic losses in animal husbandry as well as instances of human disease and occasionally give rise to human pandemics, including that caused by the H1N1/2009 virus. The lack of systematic and longitudinal influenza surveillance in pigs has hampered attempts to reconstruct the origins of this pandemic. Most existing swine data were derived from opportunistic samples collected from diseased pigs in disparate geographical regions, not from prospective studies in defined locations, hence the evolutionary and transmission dynamics of SwIV are poorly understood. Here we quantify the epidemiological, genetic and antigenic dynamics of SwIV in Hong Kong using a data set of more than 650 SwIV isolates and more than 800 swine sera from 12 years of systematic surveillance in this region, supplemented with data stretching back 34 years. Intercontinental virus movement has led to reassortment and lineage replacement, creating an antigenically and genetically diverse virus population whose dynamics are quantitatively different from those previously observed for human influenza viruses. Our findings indicate that increased antigenic drift is associated with reassortment events and offer insights into the emergence of influenza viruses with epidemic potential in swine and humans.
Assuntos
Evolução Molecular , Vírus da Influenza A Subtipo H1N1/fisiologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Suínos/virologia , Zoonoses/virologia , Animais , Aves/virologia , Feminino , Hong Kong/epidemiologia , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Masculino , Epidemiologia Molecular , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Vigilância da População , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/fisiologia , Suínos/sangue , Doenças dos Suínos/sangue , Doenças dos Suínos/epidemiologia , Zoonoses/epidemiologia , Zoonoses/transmissãoRESUMO
Although RNA viruses exhibit a high frequency of host jumps, major differences exist among the different virus families. Astroviruses infect a wide range of hosts, affecting both public health systems and economic production chains. Here we delineate the ecological and adaptive processes that drive the cross-species transmission of astroviruses. We observe that distinct transmission zones determine the prevailing astrovirus host and virus diversity, which in turn suggests that no single host group (e.g., bats) can be the natural reservoir, as illustrated through our phylogenetic analysis.
Assuntos
Adaptação Biológica , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Astroviridae/genética , Evolução Biológica , Ecossistema , Animais , Infecções por Astroviridae/transmissão , Variação Genética , Humanos , Mamíferos , FilogeniaRESUMO
The 1957 A/H2N2 influenza virus caused an estimated 2 million fatalities during the pandemic. Since viruses of the H2 subtype continue to infect avian species and pigs, the threat of reintroduction into humans remains. To determine factors involved in the zoonotic origin of the 1957 pandemic, we performed analyses on genetic sequences of 175 newly sequenced human and avian H2N2 virus isolates and all publicly available influenza virus genomes.
Assuntos
Adaptação Biológica , Vírus da Influenza A Subtipo H2N2/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Zoonoses/virologia , Animais , Aves , Surtos de Doenças , Evolução Molecular , Variação Genética , Humanos , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Dados de Sequência Molecular , RNA Viral/genética , Análise de Sequência de DNA , Zoonoses/epidemiologiaRESUMO
Influenza B virus causes significant disease but remains understudied in tropical regions. We sequenced 72 influenza B viruses collected in Kuala Lumpur, Malaysia, from 1995 to 2008. The predominant circulating lineage (Victoria or Yamagata) changed every 1 to 3 years, and these shifts were associated with increased incidence of influenza B. We also found poor lineage matches with recommended influenza virus vaccine strains. While most influenza B virus lineages in Malaysia were short-lived, one circulated for 3 to 4 years.
Assuntos
Evolução Molecular , Vírus da Influenza B/genética , Influenza Humana/genética , Sequência de Bases , Feminino , Humanos , Influenza Humana/epidemiologia , Malásia/epidemiologia , Masculino , Dados de Sequência MolecularRESUMO
BACKGROUND: Undifferentiated acute febrile illness (AFI) is a common presentation among adults in primary care settings in Singapore but large gaps exist in the understanding of the characteristics of these patients. We studied clinical and epidemiological characteristics of AFI patients and factors associated with delayed recovery from AFI. METHODS: We performed a secondary data analysis using data from the Early DENgue infection and outcome (EDEN) study on 2046 adult patients presenting at 5 Singapore polyclinics between December 2007 and February 2013 with a history of fever (≥38 °C) for less than 72 h. We used an accelerated failure time model to investigate factors associated with delayed recovery from AFI. RESULTS: The mean age of patients was 36.6 years, 65 % were male, 51 % were of Chinese ethnicity, and 75 % lived in public housing. Median illness duration was 5 days (interquartile range, 3-7). In multivariable analysis, the unemployed and white collar workers had longer illness duration compared with blue collar workers (time ratio (TR), 1.10; 95 % confidence interval (CI), 1.03-1.17 and TR, 1.08; 95 % CI, 1.02-1.15, respectively). Patients with more symptoms at initial consultation had slower recovery (TR, 1.03 per additional symptom; 95 % CI, 1.02-1.03). Other clinical factors were also associated with longer duration of illness, including use of analgesics (TR, 1.21; 95 % CI, 1.15-1.28); use of cough medicines (TR, 1.14; 95 % CI, 1.08-1.20); use of antibiotics (TR, 1.14; 95 % CI, 1.07-1.21); and hospitalization (TR, 1.59; 95 % CI, 1.39-1.82). Compared to patients with normal WBC count at first consultation, those with low WBC count had slower recovery (TR, 1.14; 95 % CI, 1.07-1.21), while the reverse was observed among patients with high WBC count (TR, 0.94; 95 % CI, 0.88-1.00). CONCLUSIONS: Differences in illness duration among different types of employment may reflect differences in their underlying general health status. Early identification of factors delaying recovery could help triage management in a primary care setting. In-depth characterization of fever etiology in Singapore will improve surveillance and control activities.
Assuntos
Febre de Causa Desconhecida/epidemiologia , Febre de Causa Desconhecida/etiologia , Adulto , Analgésicos/uso terapêutico , Antibacterianos/uso terapêutico , Dengue/tratamento farmacológico , Dengue/epidemiologia , Feminino , Febre/tratamento farmacológico , Febre/epidemiologia , Febre/etiologia , Febre de Causa Desconhecida/tratamento farmacológico , Hospitalização/estatística & dados numéricos , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Atenção Primária à Saúde , Singapura/epidemiologia , Fatores de Tempo , Resultado do TratamentoRESUMO
Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.