Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L215-L232, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310758

RESUMO

Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.


Assuntos
Fibrose Pulmonar Idiopática , Vanádio , Masculino , Humanos , Camundongos , Animais , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacologia , Vanádio/toxicidade , Vanádio/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/patologia , Inflamação/patologia , Mamíferos
2.
Toxicol Appl Pharmacol ; 459: 116327, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460058

RESUMO

Vanadium is a toxic metal listed by the IARC as possibly carcinogenic to humans. Manufactured nanosize vanadium pentoxide (V2O5) materials are used in a wide range of industrial sectors and recently have been developed as nanomedicine for cancer therapeutics, yet limited information is available to evaluate relevant nanotoxicity. In this study we used high-resolution metabolomics to assess effects of two V2O5 nanomaterials, nanoparticles and nanofibers, at exposure levels (0.01, 0.1, and 1 ppm) that did not cause cell death (i.e., non-cytotoxic) in a human airway epithelial cell line, BEAS-2B. As prepared, V2O5 nanofiber exhibited a fibrous morphology, with a width approximately 63 ± 12 nm and length in average 420 ± 70 nm; whereas, V2O5 nanoparticles showed a typical particle morphology with a size 36 ± 2 nm. Both V2O5 nanoparticles and nanofibers had dose-response effects on aminosugar, amino acid, fatty acid, carnitine, niacin and nucleotide metabolism. Differential effects of the particles and fibers included dibasic acid, glycosphingolipid and glycerophospholipid pathway associations with V2O5 nanoparticles, and cholesterol and sialic acid metabolism associations with V2O5 nanofibers. Examination by transmission electron microscopy provided evidence for mitochondrial stress and increased lysosome fusion by both nanomaterials, and these data were supported by effects on mitochondrial membrane potential and lysosomal activity. The results showed that non-cytotoxic exposures to V2O5 nanomaterials impact major metabolic pathways previously associated with human lung diseases and suggest that toxico-metabolomics may be useful to evaluate health risks from V2O5 nanomaterials.


Assuntos
Nanofibras , Nanopartículas , Humanos , Nanofibras/toxicidade , Carcinógenos/toxicidade , Células Epiteliais , Carcinogênese , Nanopartículas/toxicidade
3.
Hum Genomics ; 16(1): 67, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482414

RESUMO

BACKGROUND: The human exposome is composed of diverse metabolites and small chemical compounds originated from endogenous and exogenous sources, respectively. Genetic and environmental factors influence metabolite levels, while the extent of genetic contributions across metabolic pathways is not yet known. Untargeted profiling of human metabolome using high-resolution mass spectrometry (HRMS) combined with genome-wide genotyping allows comprehensive identification of genetically influenced metabolites. As such previous studies of adults discovered and replicated genotype-metabotype associations. However, these associations have not been characterized in children. RESULTS: We conducted the largest genome by metabolome-wide association study to date of children (N = 441) using 619,688 common genetic variants and 14,342 features measured by HRMS. Narrow-sense heritability (h2) estimates of plasma metabolite concentrations using genomic relatedness matrix restricted maximum likelihood (GREML) method showed a bimodal distribution with high h2 (> 0.8) for 15.9% of features and low h2 (< 0.2) for most of features (62.0%). The features with high h2 were enriched for amino acid and nucleic acid metabolism, while carbohydrate and lipid concentrations showed low h2. For each feature, a metabolite quantitative trait loci (mQTL) analysis was performed to identify genetic variants that were potentially associated with plasma levels. Fifty-four associations among 29 features and 43 genetic variants were identified at a genome-wide significance threshold p < 3.5 × 10-12 (= 5 × 10-8/14,342 features). Previously reported associations such as UGT1A1 and bilirubin; PYROXD2 and methyl lysine; and ACADS and butyrylcarnitine were successfully replicated in our pediatric cohort. We found potential candidates for novel associations including CSMD1 and a monostearyl alcohol triglyceride (m/z 781.7483, retention time (RT) 89.3 s); CALN1 and Tridecanol (m/z 283.2741, RT 27.6). A gene-level enrichment analysis using MAGMA revealed highly interconnected modules for dADP biosynthesis, sterol synthesis, and long-chain fatty acid transport in the gene-feature network. CONCLUSION: Comprehensive profiling of plasma metabolome across age groups combined with genome-wide genotyping revealed a wide range of genetic influence on diverse chemical species and metabolic pathways. The developmental trajectory of a biological system is shaped by gene-environment interaction especially in early life. Therefore, continuous efforts on generating metabolomics data in diverse human tissue types across age groups are required to understand gene-environment interaction toward healthy aging trajectories.


Assuntos
Genômica , Metabolômica , Humanos , Criança
4.
Biochem Biophys Res Commun ; 482(3): 388-398, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28212723

RESUMO

Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause "manganism", a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch.


Assuntos
Apoptose/fisiologia , Manganês/metabolismo , Mitocôndrias/metabolismo , Animais , Apoptose/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Manganês/toxicidade , Modelos Biológicos , Oxirredução , Estresse Oxidativo , Frações Subcelulares/metabolismo , Superóxido Dismutase/metabolismo
5.
Toxicology ; 504: 153772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479551

RESUMO

Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 µM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.


Assuntos
Brônquios , Células Epiteliais , Mitocôndrias , Compostos de Vanádio , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular , Compostos de Vanádio/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Caderinas/metabolismo , Relação Dose-Resposta a Droga
6.
EBioMedicine ; 95: 104746, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544204

RESUMO

BACKGROUND: Unravelling the relationships between candidate genes and autism spectrum disorder (ASD) phenotypes remains an outstanding challenge. Endophenotypes, defined as inheritable, measurable quantitative traits, might provide intermediary links between genetic risk factors and multifaceted ASD phenotypes. In this study, we sought to determine whether plasma metabolite levels could serve as endophenotypes in individuals with ASD and their family members. METHODS: We employed an untargeted, high-resolution metabolomics platform to analyse 14,342 features across 1099 plasma samples. These samples were collected from probands and their family members participating in the Autism Genetic Resource Exchange (AGRE) (N = 658), compared with neurotypical individuals enrolled in the PrecisionLink Health Discovery (PLHD) program at Boston Children's Hospital (N = 441). We conducted a metabolite quantitative trait loci (mQTL) analysis using whole-genome genotyping data from each cohort in AGRE and PLHD, aiming to prioritize significant mQTL and metabolite pairs that were exclusively observed in AGRE. FINDINGS: Within the AGRE group, we identified 54 significant associations between genotypes and metabolite levels (P < 5.27 × 10-11), 44 of which were not observed in the PLHD group. Plasma glutamine levels were found to be associated with variants in the NLGN1 gene, a gene that encodes post-synaptic cell-adhesion molecules in excitatory neurons. This association was not detected in the PLHD group. Notably, a significant negative correlation between plasma glutamine and glutamate levels was observed in the AGRE group, but not in the PLHD group. Furthermore, plasma glutamine levels showed a negative correlation with the severity of restrictive and repetitive behaviours (RRB) in ASD, although no direct association was observed between RRB severity and the NLGN1 genotype. INTERPRETATION: Our findings suggest that plasma glutamine levels could potentially serve as an endophenotype, thus establishing a link between the genetic risk associated with NLGN1 and the severity of RRB in ASD. This identified association could facilitate the development of novel therapeutic targets, assist in selecting specific cohorts for clinical trials, and provide insights into target symptoms for future ASD treatment strategies. FUNDING: This work was supported by the National Institute of Health (grant numbers: R01MH107205, U01TR002623, R24OD024622, OT2OD032720, and R01NS129188) and the PrecisionLink Biobank for Health Discovery at Boston Children's Hospital.


Assuntos
Transtorno do Espectro Autista , Glutamina , Criança , Humanos , Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Endofenótipos , Genótipo , Glutamina/sangue , Polimorfismo de Nucleotídeo Único
7.
Nutrition ; 116: 112160, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37566924

RESUMO

OBJECTIVES: High-resolution metabolomics enables global assessment of metabolites and molecular pathways underlying physiologic processes, including substrate utilization during the fasted state. The clinical index for substrate utilization, respiratory exchange ratio (RER), is measured via indirect calorimetry. The aim of this pilot study was to use metabolomics to identify metabolic pathways and plasma metabolites associated with substrate utilization in healthy, fasted adults. METHODS: This cross-sectional study included 33 adults (mean age 27.7 ± 4.9 y, mean body mass index 24.8 ± 4 kg/m2). Participants underwent indirect calorimetry to determine resting RER after an overnight fast. Untargeted metabolomics was performed on fasted plasma samples using dual-column liquid chromatography and ultra-high-resolution mass spectrometry. Linear regression and pathway enrichment analyses identified pathways and metabolites associated with substrate utilization measured with indirect calorimetry. RESULTS: RER was significantly associated with 1389 metabolites enriched within 13 metabolic pathways (P < 0.05). Lipid-related findings included general pathways, such as fatty acid activation, and specific pathways, such as C21-steroid hormone biosynthesis and metabolism, butyrate metabolism, and carnitine shuttle. Amino acid pathways included those central to metabolism, such as glucogenic amino acids, and pathways needed to maintain reduction-oxidation reactions, such as methionine and cysteine metabolism. Galactose and pyrimidine metabolism were also associated with RER (all P < 0.05). CONCLUSIONS: The fasting plasma metabolome reflects the diverse macronutrient pathways involved in carbohydrate, amino acid, and lipid metabolism during the fasted state in healthy adults. Future studies should consider the utility of metabolomics to profile individual nutrient requirements and compare findings reported here to clinical populations.


Assuntos
Aminoácidos , Metabolômica , Adulto , Humanos , Adulto Jovem , Estudos Transversais , Projetos Piloto , Metabolômica/métodos , Aminoácidos/metabolismo , Metaboloma
8.
Adv Redox Res ; 72023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37034445

RESUMO

Cadmium (Cd) is a toxic environmental metal that interacts with selenium (Se) and contributes to many lung diseases. Humans have widespread exposures to Cd through diet and cigarette smoking, and studies in rodent models show that Se can protect against Cd toxicities. We sought to identify whether an antagonistic relationship existed between Se and Cd burdens and determine whether this relationship may associate with metabolic variation within human lungs. We performed metabolomics of 31 human lungs, including 25 with end-stage lung disease due to idiopathic pulmonary fibrosis, cystic fibrosis, chronic obstructive lung disease (COPD)/emphysema and other causes, and 6 non-diseased lungs. Results showed pathway associations with Cd including amino acid, lipid and energy-related pathways. Metabolic pathways varying with Se had considerable overlap with these pathways. Hierarchical cluster analysis (HCA) of individuals according to metabolites associated with Cd showed partial separation of disease types, with COPD/emphysema in the cluster with highest Cd, and non-diseased lungs in the cluster with the lowest Cd. When compared to HCA of metabolites associated with Se, the results showed that the cluster containing COPD/emphysema had the lowest Se, and the non-diseased lungs had the highest Se. A greater number of pathway associations occurred for Cd to Se ratio than either Cd or Se alone, indicating that metabolic patterns were more dependent on Cd to Se ratio than on either alone. Network analysis of interactions of Cd and Se showed network centrality was associated with pathways linked to polyunsaturated fatty acids involved in inflammatory signaling. Overall, the data show that metabolic pathway responses in human lung vary with Cd and Se in a pattern suggesting that Se is antagonistic to Cd toxicity in humans.

9.
Toxicol Sci ; 188(1): 62-74, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35512398

RESUMO

Respiratory syncytial virus (RSV) infection causes serious pulmonary disease and death in high-risk infants and elderly. Cadmium (Cd) is a toxic environmental metal contaminant and constantly exposed to humans. Limited information is available on Cd toxicity after early-life respiratory virus infection. In this study, we examined the effects of low-dose Cd exposure following early-life RSV infection on lung metabolism and inflammation using mouse and fibroblast culture models. C57BL/6J mice at 8 days old were exposed to RSV 2 times with a 4-week interval. A subset of RSV-infected mice was subsequently treated with Cd at a low dose in drinking water (RSV infection at infant age [RSVinf]+Cd) for 16 weeks. The results of inflammatory marker analysis showed that the levels of cytokines and chemokines were substantially higher in RSVinf+Cd group than other groups, implying that low-dose Cd following early-life RSV infection enhanced lung inflammation. Moreover, histopathology data showed that inflammatory cells and thickening of the alveolar walls as a profibrotic signature were evident in RSVinf+Cd. The metabolomics data revealed that RSVinf+Cd-caused metabolic disruption in histamine and histidine, vitamin D and urea cycle, and pyrimidine pathway accompanying with mechanistic target of rapamycin complex-1 activation. Taken together, our study demonstrates for the first time that cumulative Cd exposure following early-life RSV infection has a significant impact on subsequent inflammation and lung metabolism. Thus, early-life respiratory infection may reprogram metabolism and potentiate Cd toxicity, enhance inflammation, and cause fibrosis later in life.


Assuntos
Infecções por Vírus Respiratório Sincicial , Animais , Cádmio , Inflamação/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios
10.
Nutr Metab (Lond) ; 19(1): 37, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597962

RESUMO

BACKGROUND: Adiposity and mitochondrial dysfunction are related factors contributing to metabolic disease development. This pilot study examined whether in vivo and ex vivo indices of mitochondrial metabolism were differentially associated with body composition in males and females. METHODS: Thirty-four participants including 19 females (mean 27 yr) and 15 males (mean 29 yr) had body composition assessed by dual energy x-ray absorptiometry and magnetic resonance (MR) imaging. Monocyte reserve capacity and maximal oxygen consumption rate (OCR) were determined ex vivo using extracellular flux analysis. In vivo quadriceps mitochondrial function was measured using 31P-MR spectroscopy based on post-exercise recovery kinetics (τPCr). The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated from fasting glucose and insulin levels. Variables were log-transformed, and Pearson correlations and partial correlations were used for analyses. RESULTS: Mitochondrial metabolism was similar between sexes (p > 0.05). In males only, higher fat mass percent (FM%) was correlated with lower reserve capacity (r = - 0.73; p = 0.002) and reduced muscle mitochondrial function (r = 0.58, p = 0.02). Thigh subcutaneous adipose tissue was inversely related to reserve capacity in males (r = - 0.75, p = 0.001), but in females was correlated to higher maximal OCR (r = 0.48, p = 0.046), independent of FM. In females, lean mass was related to greater reserve capacity (r = 0.47, p = 0.04). In all participants, insulin (r = 0.35; p = 0.04) and HOMA-IR (r = 0.34; p = 0.05) were associated with a higher τPCr. CONCLUSIONS: These novel findings demonstrate distinct sex-dependent associations between monocyte and skeletal muscle mitochondrial metabolism with body composition. With further study, increased understanding of these relationships may inform sex-specific interventions to improve mitochondrial function and metabolic health.

11.
Toxicol Sci ; 182(1): 70-81, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34009373

RESUMO

Electronic nicotine delivery system (ENDS) use has become a popular, generally regarded as safe, alternative to tobacco use. The e-liquids used for ENDS vapor generation commonly contain flavoring agents, such as maltol, which have been subjected to little investigation of their effects on lung health from ENDS usage. In the present study, we examined the impacts of firsthand (3.9 mM) and secondhand (3.9 µM) exposure levels to maltol-flavored ENDS vapors on lung metabolism. Human lung bronchial epithelial cells were exposed to ENDS vapors using a robotic system for controlled generation and delivery of exposures, and the effects on metabolism were evaluated using high-resolution metabolomics. The results show that maltol in e-liquids impacts lung airway epithelial cell metabolism at both firsthand and secondhand exposure levels. The effects of maltol were most notably seen in amino acid metabolism while oxidative stress was observed with exposure to all ENDS vapors including e-liquids alone and maltol-contained e-liquids. Many effects of firsthand exposure were also observed with secondhand exposure, suggesting need for systematic investigation of both firsthand and secondhand effects of flavored ENDS vapors on lung metabolism and risk of lung disease.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aminoácidos , Aromatizantes/toxicidade , Humanos , Pulmão , Pironas
12.
Exposome ; 1(1): osab004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35028569

RESUMO

Prevalence of autism spectrum disorder (ASD) has been increasing in the United States in the past decades. The exact mechanisms remain enigmatic, and diagnosis of the disease still relies primarily on assessment of behavior. We first used a case-control design (75 idiopathic cases and 29 controls, enrolled at Boston Children's Hospital from 2007-2012) to identify plasma biomarkers of ASD through a metabolome-wide association study approach. Then we leveraged a family-based design (31 families) to investigate the influence of shared genetic and environmental components on the autism-associated features. Using untargeted high-resolution mass spectrometry metabolomics platforms, we detected 19 184 features. Of these, 191 were associated with ASD (false discovery rate < 0.05). We putatively annotated 30 features that had an odds ratio (OR) between <0.01 and 5.84. An identified endogenous metabolite, O-phosphotyrosine, was associated with an extremely low autism odds (OR 0.17; 95% confidence interval 0.06-0.39). We also found that glutathione metabolism was associated with ASD (P = 0.048). Correlations of the significant features between proband and parents were low (median = 0.09). Of the 30 annotated features, the median correlations within families (proband-parents) were -0.15 and 0.24 for the endogenous and exogenous metabolites, respectively. We hypothesize that, without feature identification, family-based correlation analysis of autism-associated features can be an alternative way to assist the prioritization of potentially diagnostic features. A panel of ASD diagnostic metabolic markers with high specificity could be derived upon further studies.

13.
Surgery ; 169(1): 102-108, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771296

RESUMO

BACKGROUND: The incidence of primary hyperparathyroidism has increased 300% in the United States in the past 30 years, and secondary hyperparathyroidism is almost universal in patients with end-stage renal disease. We assessed the presence of environmental chemicals in human hyperplastic parathyroid tumors as possible contributing factors to this increase. METHODS: Cryopreserved hyperplastic parathyroid tumors and normal human parathyroids were analyzed by gas chromatography and liquid chromatography coupled to ultra-high-resolution mass spectrometry, bioinformatics, and biostatistics. RESULTS: Detected environmental chemicals included polychlorinated biphenyls, polybrominated diphenyl ethers, dichloro-diphenyl-trichloroethane derivatives, and other insecticides. A total of 99% had p,p'-dichlorodiphenyldichloroethylene. More than 50% contained other environmental chemicals, and many classified as endocrine disruptors. Polychlorinated biphenyl-28 and polychlorinated biphenyl-49 levels correlated positively with parathyroid tumor mass. Polybrominated diphenyl ether-47 concentrations in tumors were inversely correlated with patients' serum calcium levels. Cellular metabolites in pathways of purine and pyrimidine synthesis and mitochondrial energy production were associated with tumor growth and with p,p'-dichlorodiphenyldichloroethylene in primary hyperparathyroidism tumors. In normal parathyroids, p,p'-dichlorodiphenyldichloroethylene , polychlorinated biphenyl-28, polychlorinated biphenyl-74, and polychlorinated biphenyl-153, but not p,p'-dichlorodiphenyldichloroethylene or polychlorinated biphenyl-49, were detected. CONCLUSION: Environmental chemicals are present in human parathyroid tumors and warrant detailed epidemiologic and mechanistic studies to test for causal links to the growth of human parathyroid tumors.


Assuntos
Disruptores Endócrinos/análise , Poluentes Ambientais/análise , Hiperparatireoidismo Primário/epidemiologia , Hiperparatireoidismo Secundário/epidemiologia , Glândulas Paratireoides/química , Neoplasias das Paratireoides/epidemiologia , Causalidade , Disruptores Endócrinos/efeitos adversos , Poluentes Ambientais/efeitos adversos , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Éteres Difenil Halogenados/efeitos adversos , Éteres Difenil Halogenados/análise , Humanos , Hiperparatireoidismo Primário/patologia , Hiperparatireoidismo Primário/cirurgia , Hiperparatireoidismo Secundário/etiologia , Hiperparatireoidismo Secundário/patologia , Hiperparatireoidismo Secundário/cirurgia , Incidência , Masculino , Pessoa de Meia-Idade , Glândulas Paratireoides/patologia , Glândulas Paratireoides/cirurgia , Neoplasias das Paratireoides/complicações , Neoplasias das Paratireoides/patologia , Neoplasias das Paratireoides/cirurgia , Paratireoidectomia , Bifenilos Policlorados/efeitos adversos , Bifenilos Policlorados/análise , Estudos Retrospectivos , Estados Unidos/epidemiologia
14.
Environ Int ; 147: 106323, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360165

RESUMO

Electronic cigarettes (e-cig) are an increasingly popular alternative to traditional smoking but have been in use for too short of a period of time to fully understand health risks. Furthermore, associated health risks are difficult to evaluate because of a large range of flavoring agents and their combinations for use with e-cig. Many flavoring agents are generally regarded as safe but have limited studies for effects on lung. Vanillin, an aromatic aldehyde, is one of the most commonly used flavoring agents in e-cig. Vanillin is electrophilic and can be redox active, with chemical properties expected to interact within biologic systems. Because accumulating lung metabolomics studies have identified metabolic disruptions associated with idiopathic pulmonary fibrosis, asthma and acute respiratory distress syndrome, we used human bronchial epithelial cells (BEAS-2B) with high-resolution metabolomics analysis to determine whether these disease-associated pathways are impacted by vanillin over the range used in e-cig. A metabolome-wide association study showed that vanillin perturbed specific energy, amino acid, antioxidant and sphingolipid pathways previously associated with human disease. Analysis of a small publicly available human dataset showed associations with several of the same pathways. Because vanillin is a common and high-abundance flavorant in e-cig, these results show that vanillin has potential to be mechanistically important in lung diseases and warrants in vivo toxicity testing in the context of e-cig use.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Benzaldeídos , Células Epiteliais , Aromatizantes/toxicidade , Humanos , Metaboloma
15.
Nat Commun ; 12(1): 5575, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552080

RESUMO

Complementing the genome with an understanding of the human exposome is an important challenge for contemporary science and technology. Tens of thousands of chemicals are used in commerce, yet cost for targeted environmental chemical analysis limits surveillance to a few hundred known hazards. To overcome limitations which prevent scaling to thousands of chemicals, we develop a single-step express liquid extraction and gas chromatography high-resolution mass spectrometry analysis to operationalize the human exposome. We show that the workflow supports quantification of environmental chemicals in human plasma (200 µL) and tissue (≤100 mg) samples. The method also provides high resolution, sensitivity and selectivity for exposome epidemiology of mass spectral features without a priori knowledge of chemical identity. The simplicity of the method can facilitate harmonization of environmental biomonitoring between laboratories and enable population level human exposome research with limited sample volume.


Assuntos
Expossoma , Fluxo de Trabalho , Monitoramento Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/normas , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Metabolômica , Padrões de Referência
16.
Redox Biol ; 28: 101311, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31546171

RESUMO

Non-invasive measures of the response of individual patients to cancer therapeutics is an emerging strategy in precision medicine. Platelets offer a potential dynamic marker for metabolism and bioenergetic responses in individual patients since they have active glycolysis and mitochondrial oxidative phosphorylation and can be easily isolated from a small blood sample. We have recently shown how the bioenergetic-metabolite interactome can be defined in platelets isolated from human subjects by measuring metabolites and bioenergetics in the same sample. In the present study, we used a model system to assess test the hypothesis that this interactome is modified by xenobiotics using exposure to the anti-cancer drug doxorubicin (Dox) in individual donors. We found that unsupervised analysis of the metabolome showed clear differentiation between the control and Dox treated group. Dox treatment resulted in a concentration-dependent decrease in bioenergetic parameters with maximal respiration being most sensitive and this was associated with significant changes in over 166 features. A metabolome-wide association study of Dox was also conducted, and Dox was found to have associations with metabolites in the glycolytic and TCA cycle pathways. Lastly, network analysis showed the impact of Dox on the bioenergetic-metabolite interactome and revealed profound changes in the regulation of reserve capacity. Taken together, these data support the conclusion that platelets are a suitable platform to predict and monitor therapeutic efficacy as well as anticipate susceptibility to toxicity in the context of precision medicine.


Assuntos
Plaquetas/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Plaquetas/metabolismo , Estudos de Casos e Controles , Ciclo do Ácido Cítrico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glicólise/efeitos dos fármacos , Humanos , Metabolômica/métodos , Medicina de Precisão , Aprendizado de Máquina não Supervisionado
17.
J Occup Environ Med ; 61 Suppl 12: S15-S24, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31800447

RESUMO

OBJECTIVE: A study was conducted using serum samples and high-resolution metabolomics (HRM) to test for changes in abundance of environmental chemicals in deployment in high-risk areas (Balad, Iraq; Bagram, Afghanistan). METHODS: Pre and Post-deployment serum samples for deployment (cases) and matched controls stationed domestically were analyzed by HRM and bioinformatics for the relative abundance of 271 environmental chemicals. RESULTS: Of the 271 chemicals, 153 were measurable in at least 80% of the samples in one of the pre- or post-deployment groups. Several pesticides and other chemicals were modestly elevated post-deployment in the Control as well as the Bagram and Balad samples. Similarly, small decreases were seen for some chemicals. CONCLUSION: These results using serum samples show that for the 271 environmental chemicals studied, 56% were detected and small differences occurred with deployment to high-risk areas.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Militares/estatística & dados numéricos , Campanha Afegã de 2001- , Exposição Ambiental/análise , Poluentes Ambientais/sangue , Humanos , Espectrometria de Massas , Metabolômica , Fatores de Risco , Estados Unidos
18.
J Occup Environ Med ; 61 Suppl 12: S73-S81, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31800453

RESUMO

OBJECTIVE: A study was conducted to identifymetabolic-related effects of benzo[a]pyrene (BaP) on human lung epithelial cells and validate these findings using human sera. METHODS: Human lung epithelial cells were treated with BaP, and extracts were analyzed with a global metabolome-wide association study (MWAS) to test for pathways and metabolites altered relative to vehicle controls. RESULTS: MWAS results showed that BaP metabolites were among the top metabolites differing between BaP-treated cells and controls. Pathway enrichment analysis further confirmed that fatty acid, lipid, and mitochondrial pathways were altered by BaP. Human sera analysis showed that lipids varied with BaP concentration. BaP associations with amino acid metabolism were found in both models. CONCLUSIONS: These findings show that BaP has broad metabolic effects, and suggest that air pollution exacerbates disease processes by altered mitochondrial and amino acid metabolism.


Assuntos
Aminoácidos/metabolismo , Benzo(a)pireno/efeitos adversos , Pulmão/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Células A549/efeitos dos fármacos , Células A549/metabolismo , Benzo(a)pireno/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Pulmão/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Mitocôndrias/metabolismo , Mucosa Respiratória/metabolismo
19.
J Occup Environ Med ; 61 Suppl 12: S5-S14, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31800446

RESUMO

OBJECTIVE: Review advances in exposure assessment offered by the exposome concept and new -omics and sensor technologies. METHODS: Narrative review of advances, including current efforts and potential future applications by the US military. RESULTS: Exposure assessment methods from both bottom-up and top-down exposomics approaches are advancing at a rapid pace, and the US military is engaged in developing both approaches. Top-down approaches employ various -omics technologies to identify biomarkers of internal exposure and biological effect. Bottom-up approaches use new sensor technology to better measure external dose. Key challenges of both approaches are largely centered around how to integrate, analyze, and interpret large datasets that are multidimensional and disparate. CONCLUSIONS: Advances in -omics and sensor technologies may dramatically enhance exposure assessment and improve our ability to characterize health risks related to occupational and environmental exposures, including for the US military.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Militares/estatística & dados numéricos , Monitoramento Biológico , Epigenômica , Humanos , Metabolômica , Estados Unidos
20.
J Occup Environ Med ; 61 Suppl 12: S35-S44, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31800449

RESUMO

OBJECTIVE: A study was conducted to identify metabolic-related effects of benzo(ghi)perylene (BghiP) and 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD), on primary human fibroblasts to verify biological associations previously found in occupational health research. METHODS: Human lung fibroblasts were exposed to BghiP or HpCDD and extracts were analyzed with a metabolome-wide association study to test for pathways and metabolites altered relative to controls. Gene expression was measured by quantitative-real time polymerase chain reaction. RESULTS: Metabolic perturbations in amino-acid, oxidative stress, and fatty-acid pathways were observed for BghiP and HpCDD. HpCDD but not BghiP exposure increased gene expression of the amino acid transporters SLC7A5 and SLC7A11. CONCLUSIONS: Exposure to polycyclic aromatic hydrocarbons (PAH) or dioxins perturbs amino acid pathways at physiologically relevant concentrations with different mechanisms. These findings imply an effect on central homeostatic systems by environmental exposures which could have implications on disease susceptibility.


Assuntos
Campanha Afegã de 2001- , Aminoácidos/metabolismo , Fibroblastos/efeitos dos fármacos , Guerra do Iraque 2003-2011 , Pulmão/efeitos dos fármacos , Militares/estatística & dados numéricos , Perileno/análogos & derivados , Dibenzodioxinas Policloradas/sangue , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Fibroblastos/metabolismo , Humanos , Pulmão/metabolismo , Espectrometria de Massas , Metabolômica , Perileno/efeitos adversos , Perileno/sangue , Dibenzodioxinas Policloradas/efeitos adversos , Reação em Cadeia da Polimerase em Tempo Real , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA