Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Spine J ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472429

RESUMO

PURPOSE: To test equivalency of deep-learning 3D lumbar spine MRI with "CT-like" contrast to CT for virtual pedicle screw planning and geometric measurements in robotic-navigated spinal surgery. METHODS: Between December 2021 and June 2022, 16 patients referred for spinal fusion and decompression surgery with pre-operative CT and 3D MRI were retrospectively assessed. Pedicle screws were virtually placed on lumbar (L1-L5) and sacral (S1) vertebrae by three spine surgeons, and metrics (lateral deviation, axial/sagittal angles) were collected. Vertebral body length/width (VL/VW) and pedicle height/width (PH/PW) were measured at L1-L5 by three radiologists. Analysis included equivalency testing using the 95% confidence interval (CI), a margin of ± 1 mm (± 2.08° for angles), and intra-class correlation coefficients (ICCs). RESULTS: Across all vertebral levels, both combined and separately, equivalency between CT and MRI was proven for all pedicle screw metrics and geometric measurements, except for VL at L1 (mean difference: - 0.64 mm; [95%CI - 1.05, - 0.24]), L2 (- 0.65 mm; [95%CI - 1.11, - 0.20]), and L4 (- 0.78 mm; [95%CI - 1.11, - 0.46]). Inter- and intra-rater ICC for screw metrics across all vertebral levels combined ranged from 0.68 to 0.91 and 0.89-0.98 for CT, and from 0.62 to 0.92 and 0.81-0.97 for MRI, respectively. Inter- and intra-rater ICC for geometric measurements ranged from 0.60 to 0.95 and 0.84-0.97 for CT, and 0.61-0.95 and 0.93-0.98 for MRI, respectively. CONCLUSION: Deep-learning 3D MRI facilitates equivalent virtual pedicle screw placements and geometric assessments for most lumbar vertebrae, with the exception of vertebral body length at L1, L2, and L4, compared to CT for pre-operative planning in patients considered for robotic-navigated spine surgery.

2.
Skeletal Radiol ; 53(6): 1173-1181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38165469

RESUMO

OBJECTIVE: Describe features of iatrogenic "overshoot" nerve injuries on ultrasound and MRI, which occur when an instrument passes through the bone and injures the nerve after it penetrates the opposite cortex. MATERIALS AND METHODS: After a keyword search of the radiology database at a tertiary care orthopedic hospital from January 2016 to December 2022, those fulfilling the inclusion criteria of (1) instrumentation through the bone during surgery, (2) acute neuropathy immediately after surgery, (3) nerve injury confirmed on electrodiagnostics, and (4) imaging consistent with overshoot nerve injury were included. Imaging studies were retrospectively evaluated to determine primary and secondary signs of an overshoot nerve injury. RESULTS: Six patients (3 females, mean age 26.7 (range 10-49) years) had nerve injury fitting the mechanism of injury: 3 injuries to the radial nerve during fixation of distal humerus fractures, 1 tibial nerve and 1 superficial peroneal nerve injury during fixation of tibial fractures, and 1 posterior interosseous nerve injury during biceps tendon repair. Ultrasounds were performed in all while 4 also had MRI. Secondary signs included (1) cortical defect adjacent to injured nerve (n=2); (2) scar extending from bone to injured nerve (n=2); (3) screw tip pointing to injured nerve (n=1, 4) tract in bone on MRI from previous instrumentation pointing to injured nerve (n=2). CONCLUSION: In addition to primary signs such as laceration or neuroma, secondary signs of "overshoot" nerve injury include cortical defect, scar extending to nerve, screw tip pointing to nerve, and linear tract in the bone on MRI.


Assuntos
Cicatriz , Traumatismos dos Nervos Periféricos , Feminino , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Tendões , Traumatismos dos Nervos Periféricos/diagnóstico por imagem , Traumatismos dos Nervos Periféricos/etiologia , Doença Iatrogênica
3.
Skeletal Radiol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581584

RESUMO

OBJECTIVE: This study examines the correlation between MRI findings and difficult dissection during proximal primary hamstring repair and postoperative sciatica. MATERIALS AND METHODS: A total of 32 cases of surgically repaired hamstring tendon tears that underwent preoperative and postoperative MRI were divided into sciatica (n = 12) and control (n = 20) groups based on the presence or absence of postoperative sciatica. Cases were scored by two blinded musculoskeletal radiologists for imaging features associated with difficult surgical dissection and the development of subsequent sciatica. Intra- and interrater agreements, as well as correlation of MRI findings with symptoms (odds ratio, OR), were calculated. RESULTS: On preoperative MRI, diffuse hamstring muscle edema pattern suggestive of active denervation (OR 9.4-13.6), and greater sciatic perineural scar circumference (OR 1.9-2) and length (OR 1.2-1.3) were significantly correlated with both difficult dissection and postoperative sciatica. Preoperatively, a greater number of tendons torn (OR 3.3), greater tear cross-sectional area (CSA, OR 1.03), and increased nerve T2-weighted signal (OR 3.2) and greater perineural scar thickness (OR 1.7) were also associated with difficult dissection, but not postoperative sciatica. On postoperative MRI, hamstring denervation, sciatic nerve tethering to the hamstring tendon, and development of perineural scar and greater perineural scar extent were all significantly correlated with postoperative sciatica. CONCLUSION: Preoperative hamstring MRI demonstrates findings predictive of difficult sciatic nerve dissection; careful MRI evaluation of the nerve and for the presence and extent of perineural scar is important for preoperative planning. Preoperative and postoperative MRI both depict findings that correlate with postoperative sciatica.

4.
Skeletal Radiol ; 53(8): 1529-1539, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38386108

RESUMO

OBJECTIVE: To evaluate the impact of deep learning (DL) reconstruction in enhancing image quality and nerve conspicuity in LSP MRN using DESS sequences. Additionally, a geometric image combination (GIC) method to improve DESS signals' combination was proposed. MATERIALS AND METHODS: Adult patients undergoing 3.0 Tesla LSP MRN with DESS were prospectively enrolled. The 3D DESS echoes were separately reconstructed with and without DL and DL-GIC combined reconstructions. In a subset of patients, 3D T2-weighted short tau inversion recovery (STIR-T2w) sequences were also acquired. Three radiologists rated 4 image stacks ('DESS S2', 'DESS S2 DL', 'DESS GIC DL' and 'STIR-T2w DL') for bulk motion, vascular suppression, nerve fascicular architecture, and overall nerve conspicuity. Relative SNR, nerve-to-muscle, -fat, and -vessel contrast ratios were measured. Statistical analysis included ANOVA and Wilcoxon signed-rank tests. p < 0.05 was considered statistically significant. RESULTS: Forty patients (22 females; mean age = 48.6 ± 18.5 years) were enrolled. Quantitatively, 'DESS GIC DL' demonstrated superior relative SNR (p < 0.001), while 'DESS S2 DL' exhibited superior nerve-to-background contrast ratio (p value range: 0.002 to < 0.001). Qualitatively, DESS provided superior vascular suppression and depiction of sciatic nerve fascicular architecture but more bulk motion as compared to 'STIR-T2w DL'. 'DESS GIC DL' demonstrated better nerve visualization for several smaller, distal nerve segments than 'DESS S2 DL' and 'STIR-T2w DL'. CONCLUSION: Application of a DL reconstruction with geometric image combination in DESS MRN improves nerve conspicuity of the LSP, especially for its smaller branch nerves.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional , Plexo Lombossacral , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Plexo Lombossacral/diagnóstico por imagem , Imageamento Tridimensional/métodos , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Aumento da Imagem/métodos , Adulto
5.
Radiology ; 308(1): e222732, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37404146

RESUMO

Postoperative MRI of the lumbar spine is a mainstay for detailed anatomic assessment and evaluation of complications related to decompression and fusion surgery. Key factors for reliable interpretation include clinical presentation of the patient, operative approach, and time elapsed since surgery. Yet, recent spinal surgery techniques with varying anatomic corridors to approach the intervertebral disc space and implanted materials have expanded the range of normal (expected) and abnormal (unexpected) postoperative changes. Modifications of lumbar spine MRI protocols in the presence of metallic implants, including strategies for metal artifact reduction, provide important diagnostic information. This focused review discusses essential principles for the acquisition and interpretation of MRI after lumbar spinal decompression and fusion surgery, highlights expected postoperative changes, and describes early and delayed postoperative complications with examples.


Assuntos
Fusão Vertebral , Estenose Espinal , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Região Lombossacral/cirurgia , Imageamento por Ressonância Magnética , Descompressão Cirúrgica/efeitos adversos , Descompressão Cirúrgica/métodos , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/cirurgia , Fusão Vertebral/efeitos adversos , Fusão Vertebral/métodos , Resultado do Tratamento
6.
Radiology ; 307(1): e221087, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36511805

RESUMO

Background The efficacy of ferumoxytol, an ultrasmall superparamagnetic iron oxide particle for three-dimensional (3D) MR neurography, has yet to be evaluated. Purpose To evaluate the effects of low-dose ferumoxytol for vascular suppression and nerve visualization in 3D brachial plexus MR neurography as a pilot study. Materials and Methods Volunteers without anemia were prospectively enrolled in July 2021. Brachial plexus MR neurography was performed 30 minutes following infusion of 25% of the standard (510 mg of iron) therapeutic ferumoxytol dose with use of a 3D short-tau inversion recovery T2-weighted fast spin-echo sequence. The 3D fast spin-echo was acquired with and without the use of additional flow suppression techniques. Two musculoskeletal radiologists qualitatively evaluated examinations for the degree of vascular suppression (0-3, none to complete), nerve visualization (0-2, none to full), and motion artifact (0-4, none to severe). Nerve-to-fat, muscle, or vessel contrast ratios were calculated with use of manually drawn regions of interests. Comparisons of the proportion of scans with adequate image quality (vascular suppression, 3; nerve visualization, 1, 2; motion artifacts, 0, 1) were made with use of the McNemar test. Comparisons of quantitative contrast ratios were performed with use of Wilcoxon signed rank tests. P < .05 was deemed statistically significant. Results There were 12 volunteers (mean age, 25 years ± 3; six women) evaluated. The scans with adequate vascular suppression increased from 0% to 98% with and without ferumoxytol, respectively (P < .001). All individual nerve assessments of adequate nerve visualization increased from 4%-63% to 36%-100% without and with ferumoxytol, respectively (P < .001-.010), while motion artifacts were unchanged (from 33% to 52%, P = .212). Quantitatively, nerve-to-vessel contrast ratios increased from 0.6 without to 7.6 with ferumoxytol (P < .001). The addition of flow suppression did not change nerve-to-vessel contrast ratio quantitatively (from 7.5 to 8.4, P > .99) following ferumoxytol. Conclusion Low-dose ferumoxytol improved vascular suppression and nerve visualization in three-dimensional MR neurography of the brachial plexus compared to imaging without ferumoxytol. © RSNA, 2022.


Assuntos
Plexo Braquial , Imageamento por Ressonância Magnética , Humanos , Feminino , Adulto , Imageamento por Ressonância Magnética/métodos , Óxido Ferroso-Férrico , Projetos Piloto , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Plexo Braquial/diagnóstico por imagem
7.
Radiology ; 308(2): e230531, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37581501

RESUMO

Over the past decades, MRI has become increasingly important for diagnosing and longitudinally monitoring musculoskeletal disorders, with ongoing hardware and software improvements aiming to optimize image quality and speed. However, surging demand for musculoskeletal MRI and increased interest to provide more personalized care will necessitate a stronger emphasis on efficiency and specificity. Ongoing hardware developments include more powerful gradients, improvements in wide-bore magnet designs to maintain field homogeneity, and high-channel phased-array coils. There is also interest in low-field-strength magnets with inherently lower magnetic footprints and operational costs to accommodate global demand in middle- and low-income countries. Previous approaches to decrease acquisition times by means of conventional acceleration techniques (eg, parallel imaging or compressed sensing) are now largely overshadowed by deep learning reconstruction algorithms. It is expected that greater emphasis will be placed on improving synthetic MRI and MR fingerprinting approaches to shorten overall acquisition times while also addressing the demand of personalized care by simultaneously capturing microstructural information to provide greater detail of disease severity. Authors also anticipate increased research emphasis on metal artifact reduction techniques, bone imaging, and MR neurography to meet clinical needs.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Imageamento por Ressonância Magnética/métodos , Software , Algoritmos
8.
J Magn Reson Imaging ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702553

RESUMO

BACKGROUND: Parsonage-Turner syndrome (PTS) is characterized by severe, acute upper extremity pain and subsequent paresis and most commonly involves the long thoracic nerve (LTN). While MR neurography (MRN) can detect LTN hourglass-like constrictions (HGCs), quantitative muscle MRI (qMRI) can quantify serratus anterior muscle (SAM) neurogenic changes. PURPOSE/HYPOTHESIS: 1) To characterize qMRI findings in LTN-involved PTS. 2) To investigate associations between qMRI and clinical assessments of HGCs/electromyography (EMG). STUDY TYPE: Prospective. POPULATION: 30 PTS subjects (25 M/5 F, mean/range age = 39/15-67 years) with LTN involvement who underwent bilateral chest wall qMRI and unilateral brachial plexus MRN. FIELD STRENGTH/SEQUENCES: 3.0 Tesla/multiecho spin-echo T2-mapping, diffusion-weighted echo-planar-imaging, multiecho gradient echo. ASSESSMENT: qMRI was performed to obtain T2, muscle diameter fat fraction (FF), and cross-sectional area of the SAM. Clinical reports of MRN and EMG were obtained; from MRN, the number of HGCs; from EMG, SAM measurements of motor unit recruitment levels, fibrillations, and positive sharp waves. qMRI/MRN were performed within 90 days of EMG. EMG was performed on average 185 days from symptom onset (all ≥2 weeks from symptom onset) and 5 days preceding MRI. STATISTICAL TESTS: Paired t-tests were used to compare qMRI measures in the affected SAM versus the contralateral, unaffected side (P < 0.05 deemed statistically significant). Kendall's tau was used to determine associations between qMRI against HGCs and EMG. RESULTS: Relative to the unaffected SAM, the affected SAM had increased T2 (50.42 ± 6.62 vs. 39.09 ± 4.23 msec) and FF (8.45 ± 9.69 vs. 4.03% ± 1.97%), and decreased muscle diameter (74.26 ± 21.54 vs. 88.73 ± 17.61 µm) and cross-sectional area (9.21 ± 3.75 vs. 16.77 ± 6.40 mm2 ). There were weak to negligible associations (tau = -0.229 to <0.001, P = 0.054-1.00) between individual qMRI biomarkers and clinical assessments of HGCs and EMG. DATA CONCLUSION: qMRI changes in the SAM were observed in subjects with PTS involving the LTN. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

9.
Muscle Nerve ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610034

RESUMO

INTRODUCTION/AIMS: Hourglass-like constrictions (HGCs) of involved nerves in neuralgic amyotrophy (NA) (Parsonage-Turner syndrome) have been increasingly recognized with magnetic resonance neurography (MRN). This study sought to determine the sensitivity of HGCs, detected by MRN, among electromyography (EMG)-confirmed NA cases. METHODS: This study retrospectively reviewed records of patients with the clinical diagnosis of NA, and with EMG confirmation, who underwent 3-Tesla MRN within 90 days of EMG at a single tertiary referral center between 2011 and 2021. "Severe NA" positive cases were defined by a clinical diagnosis and specific EMG criteria: fibrillation potentials or positive sharp waves, along with motor unit recruitment (MUR) grades of "discrete" or "none." On MRN, one or more HGCs, defined as focally decreased nerve caliber or diffusely beaded appearance, was considered "imaging-positive." Post hoc inter-rater reliability for HGCs was measured by comparing the original MRN report against subsequent blinded interpretation by a second radiologist. RESULTS: A total of 123 NA patients with 3-Tesla MRN performed within 90 days of EMG were identified. HGCs were observed in 90.2% of all NA patients. In "severe NA" cases, based on the above EMG criteria, HGC detection resulted in a sensitivity of 91.9%. Nerve-by-nerve analysis (183 nerve-muscle pairs, nerves assessed by MRN, muscles assessed by EMG) showed a sensitivity of 91.0%. The second radiologist largely agreed with the original HGC evaluation, (94.3% by subjects, 91.8% by nerves), with no significant difference between evaluations (subjects: χ2 = 2.27, P = .132, nerves: χ2 = 0.98, P = .323). DISCUSSION: MRN detection of HGCs is common in NA.

10.
Skeletal Radiol ; 52(9): 1781-1784, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36752829

RESUMO

Beginning in May 2022, monkeypox infection and vaccination rates dramatically increased due to a worldwide outbreak. This case highlights magnetic resonance (MR) neurography findings in an individual who developed Parsonage-Turner syndrome (PTS) 5 days after monkeypox symptom onset and 12 days after receiving the JYNNEOS vaccination. MR neurography of the patient's left suprascapular nerve demonstrated intrinsic hourglass-like constrictions, a characteristic finding of peripheral nerves involved in PTS. Other viral infections and vaccinations are well-documented triggers of PTS, an underrecognized peripheral neuropathy that is thought to be immune-mediated and results in severe upper extremity pain and weakness. The close temporal relationship between monkeypox infection and vaccination, and PTS onset, in this case, suggests a causal relationship and marks the first known report of peripheral neuropathy associated with monkeypox.


Assuntos
Neurite do Plexo Braquial , Mpox , Doenças do Sistema Nervoso Periférico , Humanos , Neurite do Plexo Braquial/etiologia , Neurite do Plexo Braquial/complicações , Mpox/complicações , Imageamento por Ressonância Magnética/métodos , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Doenças do Sistema Nervoso Periférico/etiologia , Vacinação/efeitos adversos
11.
Skeletal Radiol ; 52(7): 1331-1338, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36602576

RESUMO

BACKGROUND AND PURPOSE: Three-dimensional (3D) imaging of the spine, augmented with AI-enabled image enhancement and denoising, has the potential to reduce imaging times without compromising image quality or diagnostic performance. This work evaluates the time savings afforded by a novel, rapid lumbar spine MRI protocol as well as image quality and diagnostic differences stemming from the use of an AI-enhanced 3D T2 sequence combined with a single Dixon acquisition. MATERIALS AND METHODS: Thirty-five subjects underwent MRI using standard 2D lumbar imaging in addition to a "rapid protocol" consisting of 3D imaging, enhanced and denoised using a prototype DL reconstruction algorithm as well as a two-point Dixon sequence. Images were graded by subspecialized radiologists and imaging times were collected. Comparison was made between 2D sagittal T1 and Dixon fat images for neural foraminal stenosis, intraosseous lesions, and fracture detection. RESULTS: This study demonstrated a 54% reduction in total acquisition time of a 3D AI-enhanced imaging lumbar spine MRI rapid protocol combined with a sagittal 2D Dixon sequence, compared to a 2D standard-of-care protocol. The rapid protocol also demonstrated strong agreement with the standard-of-care protocol with respect to osseous lesions (κ = 0.88), fracture detection (κ = 0.96), and neural foraminal stenosis (ICC > 0.9 at all levels). CONCLUSION: 3D imaging of the lumbar spine with AI-enhanced DL reconstruction and Dixon imaging demonstrated a significant reduction in imaging time with similar performance for common diagnostic metrics. Although previously limited by long postprocessing times, this technique has the potential to enhance patient throughput in busy radiology practices while providing similar or improved image quality.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Constrição Patológica , Imageamento por Ressonância Magnética/métodos , Aumento da Imagem/métodos
12.
Skeletal Radiol ; 52(4): 725-732, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36269331

RESUMO

OBJECTIVE: To compare standard-of-care two-dimensional MRI acquisitions of the cervical spine with those from a single three-dimensional MRI acquisition, reconstructed using a deep-learning-based reconstruction algorithm. We hypothesized that the improved image quality provided by deep-learning-based reconstruction would result in improved inter-rater agreement for cervical spine foraminal stenosis compared to conventional two-dimensional acquisitions. MATERIALS AND METHODS: Forty-one patients underwent routine cervical spine MRI with a conventional protocol comprising two-dimensional T2-weighted fast spin echo scans (2 axial planes, 1 sagittal plane), and an isotropic-resolution three-dimensional T2-weighted fast spin echo scan reconstructed over a 4-h time window with a deep-learning-based reconstruction algorithm. Three radiologists retrospectively assessed images for the degree to which motion artifact limited clinical assessment, and foraminal and central stenosis at each level. Inter-rater agreement was analyzed with weighted Fleiss's kappa (k) and comparisons between two-dimensional and three-dimensional sequences were performed with Wilcoxon signed-rank test. RESULTS: Inter-rater agreement for foraminal stenosis was "substantial" for two-dimensional sequences (k = 0.76) and "excellent" for the three-dimensional sequence (k = 0.81). Agreement was "excellent" for both sequences (k = 0.85 and 0.83) for central stenosis. The three-dimensional sequence had less perceptible motion artifact (p ≤ 0.001-0.036). Mean total scan time was 10.8 min for the two-dimensional sequences, and 7.3 min for the three-dimensional sequence. CONCLUSION: Three-dimensional MRI reconstructed with a deep-learning-based algorithm provided "excellent" inter-observer agreement for foraminal and central stenosis, which was at least equivalent to standard-of-care two-dimensional imaging. Three-dimensional MRI with deep-learning-based reconstruction was less prone to motion artifact, with overall scan time savings.


Assuntos
Aprendizado Profundo , Estenose Espinal , Humanos , Constrição Patológica , Estudos Retrospectivos , Estenose Espinal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Vértebras Cervicais/diagnóstico por imagem , Imageamento Tridimensional/métodos
13.
Skeletal Radiol ; 52(4): 751-761, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36318320

RESUMO

OBJECTIVE: To determine if MR neurography of the common peroneal nerve (CPN) predicts a residual motor deficit at 12-month clinical follow-up in patients presenting with foot drop. MATERIALS AND METHODS: A retrospective search for MR neurography cases evaluating the CPN at the knee was performed. Patients were included if they had electrodiagnostic testing (EDX) within 3 months of imaging, ankle and/or forefoot dorsiflexion weakness at presentation, and at least 12-month follow-up. Two radiologists individually evaluated nerve size (enlarged/normal), nerve signal (T2 hyperintense/normal), muscle signal (T2 hyperintense/normal), muscle bulk (normal/Goutallier 1/Goutallier > 1), and nerve and muscle enhancement. Discrepancies were resolved via consensus review. Multivariable logistical regression was used to evaluate for association between each imaging finding and a residual motor deficit at 12-month follow-up. RESULTS: Twenty-three 3 T MRIs in 22 patients (1 bilateral, mean age 52 years, 16 male) met inclusion criteria. Eighteen cases demonstrated common peroneal neuropathy on EDX, and median duration of symptoms was 5 months. Six cases demonstrated a residual motor deficit at 12-month follow-up. Fourteen cases underwent CPN decompression (1 bilateral) within 1 year of presentation. Three cases demonstrated Goutallier > 1 anterior compartment muscle bulk. Multivariable logistical regression did not show a statistically significant association between any of the imaging findings and a residual motor deficit at 12-month follow-up. CONCLUSION: MR neurography did not predict a residual motor deficit at 12-month follow-up in patients presenting with foot drop, though few patients demonstrated muscle atrophy in this study.


Assuntos
Neuropatias Fibulares , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neuropatias Fibulares/diagnóstico por imagem , Neuropatias Fibulares/cirurgia , Nervo Fibular/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Debilidade Muscular/diagnóstico por imagem
14.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688046

RESUMO

Flexible and stretchable radiofrequency coils for magnetic resonance imaging represent an emerging and rapidly growing field. The main advantage of such coil designs is their conformal nature, enabling a closer anatomical fit, patient comfort, and freedom of movement. Previously, we demonstrated a proof-of-concept single element stretchable coil design with a self-tuning smart geometry. In this work, we evaluate the feasibility of scaling this coil concept to a multi-element coil array and the associated engineering and manufacturing challenges. To this goal, we study a dual-channel coil array using full-wave simulations, bench testing, in vitro, and in vivo imaging in a 3 T scanner. We use three fabrication techniques to manufacture dual-channel receive coil arrays: (1) single-layer casting, (2) double-layer casting, and (3) direct-ink-writing. All fabricated arrays perform equally well on the bench and produce similar sensitivity maps. The direct-ink-writing method is found to be the most advantageous fabrication technique for fabrication speed, accuracy, repeatability, and total coil array thickness (0.6 mm). Bench tests show excellent frequency stability of 128 ± 0.6 MHz (0% to 30% stretch). Compared to a commercial knee coil array, the stretchable coil array is more conformal to anatomy and provides 50% improved signal-to-noise ratio in the region of interest.


Assuntos
Comércio , Engenharia , Humanos , Articulação do Joelho , Metais , Movimento
15.
Radiology ; 302(1): 84-87, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402669

RESUMO

Vaccination is one of the several known triggers of Parsonage-Turner syndrome (PTS). This case series describes two individuals with clinical presentations of PTS whose symptoms began 13 hours and 18 days following receipt of the Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273 COVID-19 vaccine, respectively. The diagnosis of PTS was confirmed by using both electrodiagnostic testing and 3.0-T MR neurography. Although research is needed to understand the association between PTS and COVID-19 vaccination, MR neurography may be used to help confirm suspected cases of PTS as COVID-19 vaccines continue to be distributed worldwide.


Assuntos
Neurite do Plexo Braquial/diagnóstico por imagem , Neurite do Plexo Braquial/etiologia , Plexo Braquial/diagnóstico por imagem , Vacinas contra COVID-19/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Adulto , Analgésicos , Neurite do Plexo Braquial/tratamento farmacológico , COVID-19/prevenção & controle , Gabapentina/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Prednisona/uso terapêutico
16.
J Magn Reson Imaging ; 56(4): 1104-1115, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35195321

RESUMO

BACKGROUND: Quantitative MRI (qMRI) metrics reflect microstructural skeletal muscle changes secondary to denervation and may correspond to conventional electromyography (EMG) assessments of motor unit recruitment (MUR) and denervation. HYPOTHESIS: Differences in quantitative T2 , diffusion-based apparent fiber diameter (AFD), and fat fraction (FF) exist between EMG grades, in patients with clinically suspected neuropathy of the brachial plexus. STUDY TYPE: Prospective. POPULATION: A total of 30 subjects (age = 37.5 ± 17.5, 21M/9F) with suspected brachial plexopathy. FIELD STRENGTH/SEQUENCE: 3-Tesla; qMRI using fast spin echo (T2 -mapping), multi-b-valued diffusion-weighted echo planar imaging (for AFD), and dual-echo Dixon gradient echo (FF-mapping) sequences. ASSESSMENT: qMRI values were compared against EMG grades (MUR and denervation). qMRI values (T2 , AFD, and FF) were obtained for five regional shoulder muscles. A 4-point scale was used for MUR/denervation severity. STATISTICAL TESTS: Linear mixed models and least-squares pairwise comparisons were used to evaluate qMRI differences between EMG grades. Predictive accuracy of EMG grades from qMRI was quantified by 10-fold cross-validated logistic models. A P value < 0.05 was considered statistically significant. RESULTS: Mean (95% confidence interval) qMRI for "full" MUR were T2  = 39.40 msec (35.72-43.08 msec), AFD = 78.35 µm (72.52-84.19 µm), and FF = 4.54% (2.11-6.97%). Significant T2 increases (+8.36 to +14.67 msec) and significant AFD decreases (-11.04 to -21.58 µm) were observed with all abnormal MUR grades as compared to "full" MUR. Significant changes in both T2 and AFD were observed with increased denervation (+9.59 to +15.04 msec, -16.25 to -18.66 µm). There were significant differences in FF between some MUR grades (-1.45 to +2.96%), but no significant changes were observed with denervation (P = 0.089-0.662). qMRI prediction of abnormal MUR or denervation was strong (mean accuracy = 0.841 and 0.810, respectively) but moderate at predicting individual grades (accuracy = 0.492 and 0.508, respectively). DATA CONCLUSION: Quantitative T2 and AFD differences were observed between EMG grades in assessing muscle denervation. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Plexo Braquial , Imageamento por Ressonância Magnética , Plexo Braquial/diagnóstico por imagem , Eletromiografia , Humanos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Estudos Prospectivos
17.
Eur Radiol ; 32(9): 6167-6177, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35322280

RESUMO

OBJECTIVES: To compare interobserver agreement and image quality of 3D T2-weighted fast spin echo (T2w-FSE) L-spine MRI images processed with a deep learning reconstruction (DLRecon) against standard-of-care (SOC) reconstruction, as well as against 2D T2w-FSE images. The hypothesis was that DLRecon 3D T2w-FSE would afford improved image quality and similar interobserver agreement compared to both SOC 3D and 2D T2w-FSE. METHODS: Under IRB approval, patients who underwent routine 3-T lumbar spine (L-spine) MRI from August 17 to September 17, 2020, with both isotropic 3D and 2D T2w-FSE sequences, were retrospectively included. A DLRecon algorithm, with denoising and sharpening properties was applied to SOC 3D k-space to generate 3D DLRecon images. Four musculoskeletal radiologists blinded to reconstruction status evaluated randomized images for motion artifact, image quality, central/foraminal stenosis, disc degeneration, annular fissure, disc herniation, and presence of facet joint cysts. Inter-rater agreement for each graded variable was evaluated using Conger's kappa (κ). RESULTS: Thirty-five patients (mean age 58 ± 19, 26 female) were evaluated. 3D DLRecon demonstrated statistically significant higher median image quality score (2.0/2) when compared to SOC 3D (1.0/2, p < 0.001), 2D axial (1.0/2, p < 0.001), and 2D sagittal sequences (1.0/2, p value < 0.001). κ ranges (and 95% CI) for foraminal stenosis were 0.55-0.76 (0.32-0.86) for 3D DLRecon, 0.56-0.73 (0.35-0.84) for SOC 3D, and 0.58-0.71 (0.33-0.84) for 2D. Mean κ (and 95% CI) for central stenosis at L4-5 were 0.98 (0.96-0.99), 0.97 (0.95-0.99), and 0.98 (0.96-0.99) for 3D DLRecon, 3D SOC and 2D, respectively. CONCLUSIONS: DLRecon 3D T2w-FSE L-spine MRI demonstrated higher image quality and similar interobserver agreement for graded variables of interest when compared to 3D SOC and 2D imaging. KEY POINTS: • 3D DLRecon T2w-FSE isotropic lumbar spine MRI provides improved image quality when compared to 2D MRI, with similar interobserver agreement for clinical evaluation of pathology. • 3D DLRecon images demonstrated better image quality score (2.0/2) when compared to standard-of-care (SOC) 3D (1.0/2), p value < 0.001; 2D axial (1.0/2), p value < 0.001; and 2D sagittal sequences (1.0/2), p value < 0.001. • Interobserver agreement for major variables of interest was similar among all sequences and reconstruction types. For foraminal stenosis, κ ranged from 0.55 to 0.76 (95% CI 0.32-0.86) for 3D DLRecon, 0.56-0.73 (95% CI 0.35-0.84) for standard-of-care (SOC) 3D, and 0.58-0.71 (95% CI 0.33-0.84) for 2D.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Adulto , Idoso , Constrição Patológica , Feminino , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
18.
AJR Am J Roentgenol ; 219(2): 279-291, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35234483

RESUMO

BACKGROUND. A standardized guideline and scoring system would improve evaluation and reporting of peripheral neuropathy (PN) on MRI. OBJECTIVE. The objective of this study was to create and validate a neuropathy classification and grading system, which we named the Neuropathy Score Reporting and Data System (NS-RADS). METHODS. This retrospective study included 100 patients with nerve imaging studies and known clinical diagnoses. Experts crafted NS-RADS using mutually agreed-on qualitative criteria for the classification and grading of PN. Different classes were created to account for the spectrum of underlying pathologies: unremarkable (U), injury (I), neoplasia (N), entrapment (E), diffuse neuropathy (D), not otherwise specified (NOS), and postintervention state (PI). Subclasses were established to describe the severity or extent of the lesions. Validation testing was performed by 11 readers from 10 institutions with experience levels ranging from 3 to 18 years after residency. After initial reader training, cases were presented to readers who were blinded to the final clinical diagnoses. Interobserver agreement was assessed using correlation coefficients and the Conger kappa, and accuracy testing was performed. RESULTS. Final clinical diagnoses included normal (n = 5), nerve injury (n = 25), entrapment (n = 15), neoplasia (n = 33), diffuse neuropathy (n = 18), and persistent neuropathy after intervention (n = 4). The miscategorization rate for NS-RADS classes was 1.8%. Final diagnoses were correctly identified by readers in 71-88% of cases. Excellent inter-reader agreement was found on the NS-RADS pathology categorization (κ = 0.96; 95% CI, 0.93-0.98) as well as muscle pathology categorization (κ = 0.76; 95% CI, 0.68-0.82). The accuracy for determining milder versus more severe categories per radiologist ranged from 88% to 97% for nerve lesions and from 86% to 94% for muscle abnormalities. CONCLUSION. The proposed NS-RADS classification is accurate and reliable across different reader experience levels and a spectrum of PN conditions. CLINICAL IMPACT. NS-RADS can be used as a standardized guideline for reporting PN and improved multidisciplinary communications.


Assuntos
Imageamento por Ressonância Magnética , Doenças do Sistema Nervoso Periférico , Humanos , Imageamento por Ressonância Magnética/métodos , Variações Dependentes do Observador , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Estudos Retrospectivos
19.
Skeletal Radiol ; 51(10): 1909-1922, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35478047

RESUMO

A standardized guideline and scoring system should be used for the MR imaging diagnosis of peripheral neuropathy. The MR imaging-based Neuropathy Score Reporting and Data System (NS-RADS) is a newly devised classification system (in press in AJR) that can be used to communicate both type and severity of peripheral neuropathy in the light of clinical history and examination findings. The spectrum of neuropathic conditions and peripheral nerve disorders covered in this system includes nerve injury, entrapment, neoplasm, diffuse neuropathy, and post-interventional states. This classification system also describes the temporal MR imaging appearances of regional muscle denervation changes. This review article is based on the multicenter validation study pre-published in American journal of Roentgenology and discusses technical considerations of optimal MR imaging for peripheral nerve evaluation and discusses the NS-RADS classification and its severity scales with illustration of conditions that fall under each classification. The readers can gain knowledge of the NS-RADS classification system and learn to apply it in their practices for improved inter-disciplinary communications and timely patient management.


Assuntos
Imageamento por Ressonância Magnética , Doenças do Sistema Nervoso Periférico , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Multicêntricos como Assunto , Nervos Periféricos , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem
20.
Radiology ; 300(2): 246-259, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184933

RESUMO

As the frequency of orthopedic procedures performed each year in the United States continues to increase, evaluation of peripheral nerve injury (PNI) in the presence of pre-existing metallic hardware is in higher demand. Advances in metal artifact reduction techniques have substantially improved the capability to reduce the susceptibility effect at MRI, but few reports have documented the use of MR neurography in the evaluation of peripheral nerves in the presence of orthopedic hardware. This report delineates the challenges of MR neurography around metal given the high spatial resolution often required to adequately depict small peripheral nerves. It offers practical tips, including strategies for prescan assessment and protocol optimization, including use of more conventional two-dimensional proton density and T2-weighted fat-suppressed sequences and specialized three-dimensional techniques, such as reversed free-induction steady-state precession and multispectral imaging, which enable vascular suppression and metal artifact reduction, respectively. Finally, this article emphasizes the importance of real-time monitoring by radiologists to optimize the diagnostic yield of MR neurography in the presence of orthopedic hardware. © RSNA, 2021.


Assuntos
Imageamento por Ressonância Magnética/métodos , Metais , Traumatismos dos Nervos Periféricos/diagnóstico por imagem , Próteses e Implantes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA