Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 515(7527): 379-83, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25409828

RESUMO

Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets, ferroelectrics and superconductors. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities. In addition, these materials often contain ferroelastic domains. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material's properties. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics.

2.
Nanotechnology ; 25(38): 385703, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25181396

RESUMO

Remanent state and magnetization reversal processes of a series of cobalt antidot arrays with a fixed hole diameter (d ≈ 55 nm) and an array periodicity (p) ranging between 95 and 524 nm were studied by in situ Lorentz microscopy (LM) as a function of the magnetic field. At remanence, defocused LM images showed the periodicity dependence of the magnetic states inside the lattice. A remarkable transition was observed in the type of domain structures as a function of p: for the large periodicities (p > 300 nm), conventional 90° and 180° domain walls were formed, whereas in small-period antidot arrays (p â‰¦ 160 nm) magnetic superdomain walls (SDWs) were nucleated to separate regions with different average magnetization direction, the so-called magnetic superdomains. In the SDW regime, a low-frequency Fourier filtering method was implemented to allow a quantitative analysis of the LM images by the transport of intensity equation method. In situ LM experiments under applied magnetic fields were performed to study the reversal magnetization process in a particular array (p = 160 nm), and clear differences were observed as a function of the magnetic field orientation. The switching process under magnetic fields parallel to the horizontal antidot rows occurs in two stages: the system first nucleates and propagates horizontal SDWs, parallel to the field. Then, at higher magnetic fields, vertical SDWs, perpendicular to the field, appear before saturation. When the magnetic field is applied at 45° with respect to the antidot rows, both horizontal and vertical SDWs are nucleated and propagated simultaneously. All the experiments were successfully correlated with micromagnetic simulations. The current study sheds new light on the magnetization reversal processes of antidot arrays and opens new possibilities of exploiting the potential of high-resolution in situ LM and new data analysis procedures to probe magnetization processes in nanomagnetism, particularly in periodic arrays of nanomagnets.

3.
Nano Lett ; 13(4): 1410-5, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23418908

RESUMO

The performance of ferroelectric devices, for example, the ferroelectric field effect transistor, is reduced by the presence of crystal defects such as edge dislocations. For example, it is well-known that edge dislocations play a crucial role in the formation of ferroelectric dead-layers at interfaces and hence finite size effects in ferroelectric thin films. The detailed lattice structure including the relevant electromechanical coupling mechanisms in close vicinity of the edge dislocations is, however, not well-understood, which hampers device optimization. Here, we investigate edge dislocations in ferroelectric BiFeO3 by means of spherical aberration-corrected scanning transmission electron microscopy, a dedicated model-based structure analysis, and phase field simulations. Unit-cell-wise resolved strain and polarization profiles around edge dislocation reveal a wealth of material states including polymorph nanodomains and multiple domain walls characteristically pinned to the dislocation. We locally determine the piezoelectric tensor and identify piezoelectric coupling as the driving force for the observed phenomena, explaining, for example, the orientation of the domain wall with respect to the edge dislocation. Furthermore, an atomic model for the dislocation core is derived.


Assuntos
Berílio/química , Eletricidade , Compostos Férricos/química , Nanoestruturas/química , Microscopia Eletrônica de Transmissão e Varredura , Tamanho da Partícula , Transistores Eletrônicos
4.
Phys Rev Lett ; 111(2): 025501, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23889416

RESUMO

The distribution and movement of charge is fundamental to many physical phenomena, particularly for applications involving nanoparticles, nanostructures, and electronic devices. However, there are very few ways of quantifying charge at the necessary length scale. Here, we show that aberration-corrected electron holography is capable of counting the charge on individual nanoparticles to a precision of one elementary unit of charge. We present a method that measures charges within predefined contours by directly applying Gauss's law at the nanoscale. We perform a statistical analysis to reveal the relationship between the size of the contours and the precision of the charge measurement and present strategies to optimize the spatial and signal resolution for the presented method.

5.
Nat Mater ; 10(12): 963-7, 2011 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22001961

RESUMO

Strain engineering enables modification of the properties of thin films using the stress from the substrates on which they are grown. Strain may be relaxed, however, and this can also modify the properties thanks to the coupling between strain gradient and polarization known as flexoelectricity. Here we have studied the strain distribution inside epitaxial films of the archetypal ferroelectric PbTiO(3), where the mismatch with the substrate is relaxed through the formation of domains (twins). Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal an intricate strain distribution, with gradients in both the vertical and, unexpectedly, the horizontal direction. These gradients generate a horizontal flexoelectricity that forces the spontaneous polarization to rotate away from the normal. Polar rotations are a characteristic of compositionally engineered morphotropic phase boundary ferroelectrics with high piezoelectricity; flexoelectricity provides an alternative route for generating such rotations in standard ferroelectrics using purely physical means.

6.
Phys Rev Lett ; 109(4): 047601, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-23006107

RESUMO

Domain walls (DWs) substantially influence a large number of applications involving ferroelectric materials due to their limited mobility when shifted during polarization switching. The discovery of greatly enhanced conduction at BiFeO(3) DWs has highlighted yet another role of DWs as a local material state with unique properties. However, the lack of precise information on the local atomic structure is still hampering microscopical understanding of DW properties. Here, we examine the atomic structure of BiFeO(3) 109° DWs with pm precision by a combination of high-angle annular dark-field scanning transmission electron microscopy and a dedicated structural analysis. By measuring simultaneously local polarization and strain, we provide direct experimental proof for the straight DW structure predicted by ab initio calculations as well as the recently proposed theory of diffuse DWs, thus resolving a long-standing discrepancy between experimentally measured and theoretically predicted DW mobilities.

7.
J Nanosci Nanotechnol ; 11(9): 7653-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22097470

RESUMO

Magnetization dynamics and field dependent magnetization of different devices based on 25-30 nm thick Permalloy (Py) films: such as single Py layers (Py/MgO; Py/CoFeB/Al2O3) and Py inserted as a magnetic layer in magnetic tunnel junctions (Py/CoFe/Al2O3/CoFe; Py/CoFeB/Al2O3/CoFe; Py/MgO/Fe) have been extensively studied within a temperature range between 300 K down to 5 K. The dynamic response was investigated in the linear regime measuring the ferromagnetic resonance response of the Py layers using broadband vector network analyzer technique. Both the static and the dynamic properties suggest the possible presence of a thermally induced spin reorientation transition in the Py interface at temperatures around 60 K in all the samples investigated. It seems, however, that the details of the interface between Py and the hardening ferromagnet/insulator structure, the atomic structure of Py layers (amorphous vs. textured) as well as the presence of dipolar coupling through the insulating barrier in the magnetic tunnel junction structures could strongly influence this low temperature reorientation transition. Our conclusions are indirectly supported by structural characterization of the samples by means of X-Ray diffraction and high resolution transmission electron microscopy techniques. Micromagnetic simulations indicate the possibility of strongly enhanced surface anisotropy in thin Py films over CoFe or CoFeB underlayers. Comparison of the simulations with experimental results also shows that the thermally-induced spin reorientation transition could be influenced by the presence of strong disorder at the surface.

9.
Nanoscale ; 12(4): 2587-2595, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31939948

RESUMO

Vortex-mediated magnetization reversal in individual ultra-small (∼100 nm) ferromagnetic particles at low temperatures is studied by nanoSQUID magnetometry. At zero applied bias field, the flux-closure magnetic state (vortex) and the quasi uniform configuration are bi-stable. This stems from the extremely small size of the nanoparticles that lies very close to the limit of single-domain formation. The analysis of the temperature-dependent (from 0.3 to 70 K) hysteresis of the magnetization allows us to infer the nature of the ground state magnetization configuration. The latter corresponds to a vortex state as also confirmed by electron holography experiments. Based on the simultaneous analysis of the vortex nucleation and annihilation data, we estimate the magnitude of the energy barriers separating the quasi single-domain and the vortex state and their field dependence. For this purpose, we use a modified power-law scaling of the energy barriers as a function of the applied bias field. These studies are essential to test the thermal and temporal stability of flux-closure states stabilized in ultra-small ferromagnets.

10.
Ultramicroscopy ; 108(5): 393-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17619085

RESUMO

We present the quantitative measurement of inelastic intensity distributions in diffraction patterns with the aim of studying magnetic materials. The relevant theory based on the mixed dynamic form factor (MDFF) is outlined. Experimentally, the challenge is to obtain sufficient signal for core losses of 3d magnetic materials (in the 700-900eV energy-loss range). We compare two experimental settings in diffraction mode, i.e. the parallel diffraction and the large-angle convergent-beam electron diffraction configurations, and demonstrate the interest of using a spherical aberration corrector. We show how the energy spectrum imaging (ESI) technique can be used to map the inelastic signal in a data cube of scattering angle and energy loss. The magnetic chiral dichroic signal is measured for a magnetite sample and compared with theory.

11.
J Phys Condens Matter ; 20(26): 265001, 2008 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-21694350

RESUMO

Bulk Sm(1-x)Gd(x)Al(2) (0.01

12.
J Phys Condens Matter ; 30(21): 215701, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29633959

RESUMO

Lead zirconate titanate samples are used for their piezoelectric and ferroelectric properties in various types of micro-devices. Epitaxial layers of tetragonal perovskites have a tendency to relax by forming [Formula: see text] ferroelastic domains. The accommodation of the a/c/a/c polydomain structure on a flat substrate leads to nanoscale deformation gradients which locally influence the polarization by flexoelectric effect. Here, we investigated the deformation fields in epitaxial layers of Pb(Zr0.2Ti0.8)O3 grown on SrTiO3 substrates using transmission electron microscopy (TEM). We found that the deformation gradients depend on the domain walls inclination ([Formula: see text] or [Formula: see text] to the substrate interface) of the successive [Formula: see text] domains and we describe three different a/c/a domain configurations: one configuration with parallel a-domains and two configurations with perpendicular a-domains (V-shaped and hat-[Formula: see text]-shaped). In the parallel configuration, the c-domains contain horizontal and vertical gradients of out-of-plane deformation. In the V-shaped and hat-[Formula: see text]-shaped configurations, the c-domains exhibit a bending deformation field with vertical gradients of in-plane deformation. Each of these configurations is expected to have a different influence on the polarization and so the local properties of the film. The deformation gradients were measured using dark-field electron holography, a TEM technique, which offers a good sensitivity (0.1%) and a large field-of-view (hundreds of nanometers). The measurements are compared with finite element simulations.

13.
Ultramicroscopy ; 175: 67-80, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28135590

RESUMO

We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future.

14.
Micron ; 37(5): 478-85, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16376556

RESUMO

The trend in reducing device dimension induces new physical properties and requires the development of measurement tools at the nanometer scale. This paper deals with the relation between magnetism and structure of thin films. We have chosen cobalt as a ferromagnetic layer and chromium as a bcc buffer. Magnetic and structural investigations have been led on epitaxial Co/Cr layers grown on MgO (001) substrates. The thickness of the cobalt layer varies from 0.75 to 20 nm. Investigations on the cobalt layer by EXAFS and HRTEM give evidence for a bcc or a hcp structure depending on the cobalt thickness. Magnetic measurements using SQUID indicate that the saturation magnetisation per volume unit is constant for the layers. EELS experiments have been carried out to measure any evolution in the I(L3)/I(L2) ratio for ferromagnetic layers of different thickness. We discuss the influence of structural and magnetic contributions on the evolution of the ratio with the cobalt thickness.

15.
Ultramicroscopy ; 151: 107-115, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25522868

RESUMO

A newly developed carbon cone nanotip (CCnT) has been used as field emission cathode both in low voltage SEM (30 kV) electron source and high voltage TEM (200 kV) electron source. The results clearly show, for both technologies, an unprecedented stability of the emission and the probe current with almost no decay during 1h, as well as a very small noise (rms less than 0.5%) compared to standard sources which use tungsten tips as emitting cathode. In addition, quantitative electric field mapping around the FE tip have been performed using in situ electron holography experiments during the emission of the new tip. These results show the advantage of the very high aspect ratio of the new CCnT which induces a strong enhancement of the electric field at the apex of the tip, leading to very small extraction voltage (some hundred of volts) for which the field emission will start. The combination of these experiments with emission current measurements has also allowed to extract an exit work function value of 4.8 eV.

16.
Clin Pharmacokinet ; 29(4): 221-30, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8549024

RESUMO

The linear and predictable pharmacokinetic properties of the histamine H1-receptor antagonist levocabastine make it particularly suitable for intranasal or ocular treatment of allergic rhinoconjunctivitis. Peak plasma concentrations (Cmax) occur within 1 to 2 hours of administration of single doses of levocabastine nasal spray and eye drops (0.2mg and 0.04mg, respectively). Drug absorption is incomplete after intranasal and ocular administration, with systemic availability ranging from 60 to 80% for levocabastine nasal spray and from 30 to 60% for the eye drops. However, as the amount of levocabastine applied intranasally and ocularly is small, the levocabastine plasma concentrations achieved are extremely low, with Cmax values in the ranges 1.4 to 2.2 micrograms/L and 0.26 to 0.29 micrograms/L for intranasal and ocular administration, respectively. Pharmacokinetic-pharmacodynamic modelling has indicated that the clinical benefits of levocabastine are predominantly mediated through local antihistaminic effects, although some systemic activity may contribute to the therapeutic efficacy of levocabastine nasal spray during long term use. Levocabastine undergoes minimal hepatic metabolism, i.e. ester glucuronidation, and is predominantly cleared by the kidneys. Approximately 70% of parent drug is recovered unchanged in the urine. Plasma protein binding is approximately 55% and the potential for drug interactions involving binding site displacement is negligible. Furthermore, the pharmacokinetics of this agent do not appear to be influenced by either age or gender. Levocabastine nasal spray and eye drops may thus be considered suitable for the treatment of allergic rhinoconjunctivitis in a wide patient population.


Assuntos
Antagonistas dos Receptores Histamínicos H1/farmacocinética , Piperidinas/farmacocinética , Administração Tópica , Animais , Antagonistas dos Receptores Histamínicos H1/administração & dosagem , Humanos , Piperidinas/administração & dosagem , Absorção Cutânea
17.
J Clin Psychiatry ; 55 Suppl: 13-7, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-7520903

RESUMO

Risperidone is rapidly and completely absorbed after oral administration; less than 1% is excreted unchanged in the feces. The principal metabolite was found to be 9-hydroxyrisperidone. Hydroxylation of risperidone is subject to the same genetic polymorphism as debrisoquine and dextromethorphan. In poor metabolizers the half-life of risperidone was about 19 hours compared with about 3 hours in extensive metabolizers. However, becuase the pharmacology of 9-hydroxyrisperidone is very similar to that of risperidone, the half-life for the "active fraction" (risperidone +9-hydroxyrisperidone) was found to be approximately 20 hours in extensive and poor metabolizers. We found that risperidone exhibited linear elimination kinetics and that steady state was reached within 1 day for risperidone and within 5 days for the active fraction.


Assuntos
Antipsicóticos/farmacocinética , Isoxazóis/farmacocinética , Piperidinas/farmacocinética , Idoso , Animais , Biotransformação , Cães , Meia-Vida , Humanos , Cirrose Hepática/metabolismo , Masculino , Palmitato de Paliperidona , Pirimidinas/farmacocinética , Ratos , Valores de Referência , Insuficiência Renal/metabolismo , Risperidona , Esquizofrenia/sangue
18.
Psychopharmacology (Berl) ; 114(4): 566-72, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-7531854

RESUMO

The plasma protein binding of the new antipsychotic risperidone and of its active metabolite 9-hydroxy-risperidone was studied in vitro by equilibrium dialysis. Risperidone was 90.0% bound in human plasma, 88.2% in rat plasma and 91.7% in dog plasma. The protein binding of 9-hydroxy-risperidone was lower and averaged 77.4% in human plasma, 74.7% in rat plasma and 79.7% in dog plasma. In human plasma, the protein binding of risperidone was independent of the drug concentration up to 200 ng/ml. The binding of risperidone increased at higher pH values. Risperidone was bound to both albumin and alpha 1-acid glycoprotein. The plasma protein binding of risperidone and 9-hydroxy-risperidone in the elderly was not significantly different from that in young subjects. Plasma protein binding differences between patients with hepatic or renal impairment and healthy subjects were either not significant or rather small. The blood to plasma concentration ratio of risperidone averaged 0.67 in man, 0.51 in dogs and 0.78 in rats. Displacement interactions of risperidone and 9-hydroxy-risperidone with other drugs were minimal.


Assuntos
Antipsicóticos/sangue , Isoxazóis/sangue , Piperidinas/sangue , Adulto , Idoso , Animais , Células Sanguíneas/metabolismo , Proteínas Sanguíneas/metabolismo , Cães , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Nefropatias/sangue , Hepatopatias/sangue , Masculino , Pessoa de Meia-Idade , Orosomucoide/metabolismo , Palmitato de Paliperidona , Ligação Proteica , Pirimidinas/sangue , Ratos , Ratos Wistar , Risperidona , Albumina Sérica/metabolismo
19.
Psychopharmacology (Berl) ; 122(3): 223-9, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8748391

RESUMO

The pharmacokinetics of the antipsychotic agent risperidone were investigated in healthy young and elderly subjects, cirrhotic patients and patients with moderate and severe renal insufficiency. In a comparative trial, a single oral 1-mg dose was administered to fasting subjects. Plasma and urine concentrations of the parent compound risperidone and the active moiety (i.e. risperidone plus 9-hydroxy-risperidone) were measured by radioimmunoassays. No or only small changes in plasma protein binding were observed in hepatic and renal disease, whereas the protein binding was not influenced by aging. The inter-individual variability in plasma concentrations of the active moiety was much less than the variability in plasma concentrations of risperidone. Three out of six subjects, behaving like poor metabolizers, were on medication (thiethylperazine, amitriptyline, metoprolol) that may inhibit risperidone metabolism by CYP2D6 (debrisoquine 4-hydroxylase). The pharmacokinetics of risperidone in elderly and cirrhotic patients were comparable to those in young subjects, whereas total oral clearance was reduced in renal disease patients. The elimination rate and clearance of 9-hydroxy-risperidone was reduced in elderly and renal disease patients because of a diminished creatinine clearance. The CL(oral) of the active moiety, which is primarily 9-hydroxy-risperidone, was reduced by about 30% in the elderly and by about 50% in renal disease patients. In addition, the t1/2 of the active moiety was prolonged (19 h in young subjects versus about 25 h in elderly and renal disease patients). Based upon the pharmacokinetics of the active moiety, a dose reduction and a cautious dose titration is advised in the elderly and in patients with renal disease. In cirrhotic patients, the single-dose pharmacokinetics were comparable to those in healthy young subjects.


Assuntos
Antipsicóticos/farmacocinética , Falência Renal Crônica/fisiopatologia , Cirrose Hepática/fisiopatologia , Risperidona/farmacocinética , Adulto , Fatores Etários , Idoso , Proteínas Sanguíneas/metabolismo , Feminino , Meia-Vida , Humanos , Falência Renal Crônica/sangue , Falência Renal Crônica/urina , Cirrose Hepática/sangue , Cirrose Hepática/urina , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Risperidona/sangue , Risperidona/urina , Albumina Sérica/metabolismo
20.
J Steroid Biochem Mol Biol ; 37(3): 335-41, 1990 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-2257238

RESUMO

R76713 is a novel triazole derivative which selectively blocks the cytochrome P450-dependent aromatase. In human placental microsomes, in FSH-stimulated rat and human granulosa cells and in human adipose stromal cells, 50% inhibition of estradiol biosynthesis was obtained at drug concentrations of 2-10 nM. In PMSG-injected female rats, R76713 lowered plasma estradiol levels by 50 and 90% 2 h after single oral doses of 0.005 and 0.05 mg/kg respectively. After 1 mg/kg, estradiol levels were suppressed by 90% for 16 h. In male cynomolgus monkeys, R76713 dose-dependently (0.03-10 micrograms/kg) inhibited peripheral aromatization with an ED50 of 0.13 microgram/kg without altering metabolic clearance rates and conversion ratios. In vitro R76713 had no effect on other P450-dependent steroidogenic enzymes up to 1000 nM at least. In rats, LHRH-, ACTH- and sodium-deprived diet stimulated plasma testosterone, corticosterone and aldosterone levels were not modified 2 h after single oral administrations of R76713 (up to 20 mg/kg). Furthermore, R76713 did not show any in vitro or in vivo estrogenic or antiestrogenic property. R76713 also induced regression of DMBA-induced mammary tumors after daily oral administration of 1 mg/kg b.i.d. In male volunteers (n = 4), a single oral dose of 5 and 10 mg lowered median plasma estradiol levels from 70 pM to the detection limit of the assay (40 pM) 4, 8 and 24 h after intake whereas no changes were detected after placebo administration. In premenopausal women (n = 15), receiving a single oral dose of 20 mg, median plasma estradiol levels decreased from 389 pM (before) to 168, 133 and 147 pM, 4, 8 and 24 h after intake whereas they remained above 420 pM after placebo (n = 7).


Assuntos
Inibidores da Aromatase , Triazóis/farmacologia , Animais , Feminino , Humanos , Masculino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA