Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.267
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(18): 3375-3389.e21, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998627

RESUMO

Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving multiple immune cells. To elucidate SLE pathogenesis, it is essential to understand the dysregulated gene expression pattern linked to various clinical statuses with a high cellular resolution. Here, we conducted a large-scale transcriptome study with 6,386 RNA sequencing data covering 27 immune cell types from 136 SLE and 89 healthy donors. We profiled two distinct cell-type-specific transcriptomic signatures: disease-state and disease-activity signatures, reflecting disease establishment and exacerbation, respectively. We then identified candidate biological processes unique to each signature. This study suggested the clinical value of disease-activity signatures, which were associated with organ involvement and therapeutic responses. However, disease-activity signatures were less enriched around SLE risk variants than disease-state signatures, suggesting that current genetic studies may not well capture clinically vital biology. Together, we identified comprehensive gene signatures of SLE, which will provide essential foundations for future genomic and genetic studies.


Assuntos
Lúpus Eritematoso Sistêmico , Transcriptoma , Humanos , Lúpus Eritematoso Sistêmico/genética , Análise de Sequência de RNA
2.
Cell ; 171(2): 481-494.e15, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985567

RESUMO

Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.


Assuntos
Sistemas CRISPR-Cas , Perfilação da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Células Cultivadas , Exoma , Feminino , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Masculino , Rituximab/administração & dosagem
3.
Proc Natl Acad Sci U S A ; 121(26): e2319322121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900789

RESUMO

Thymocyte selection-associated high-mobility group box (TOX) is a transcription factor that is crucial for T cell exhaustion during chronic antigenic stimulation, but its role in inflammation is poorly understood. Here, we report that TOX extracellularly mediates drastic inflammation upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by binding to the cell surface receptor for advanced glycation end-products (RAGE). In various diseases, including COVID-19, TOX release was highly detectable in association with disease severity, contributing to lung fibroproliferative acute respiratory distress syndrome (ARDS). Recombinant TOX-induced blood vessel rupture, similar to a clinical signature in patients experiencing a cytokine storm, further exacerbating respiratory function impairment. In contrast, disruption of TOX function by a neutralizing antibody and genetic removal of RAGE diminished TOX-mediated deleterious effects. Altogether, our results suggest an insight into TOX function as an inflammatory mediator and propose the TOX-RAGE axis as a potential target for treating severe patients with pulmonary infection and mitigating lung fibroproliferative ARDS.


Assuntos
COVID-19 , Receptor para Produtos Finais de Glicação Avançada , SARS-CoV-2 , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/patologia , COVID-19/complicações , COVID-19/virologia , Animais , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Masculino , Pulmão/patologia , Pulmão/metabolismo , Pulmão/imunologia , Feminino
4.
Proc Natl Acad Sci U S A ; 121(22): e2404007121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768347

RESUMO

Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.


Assuntos
Tato , Realidade Virtual , Tecnologia sem Fio , Humanos , Tecnologia sem Fio/instrumentação , Tato/fisiologia , Pele , Robótica/instrumentação , Robótica/métodos
5.
Bioessays ; 46(8): e2300229, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922965

RESUMO

In billion years of evolution, eukaryotes preserved the chromosome ends with arrays of guanine repeats surrounded by thymines and adenines, which can form stacks of four-stranded planar structure known as G-quadruplex (G4). The rationale behind the evolutionary conservation of the G4 structure at the telomere remained elusive. Our recent study has shed light on this matter by revealing that telomere G4 undergoes oscillation between at least two distinct folded conformations. Additionally, tumor suppressor BRCA2 exhibits a unique mode of interaction with telomere G4. To elaborate, BRCA2 directly interacts with G-triplex (G3)-derived intermediates that form during the interconversion of the two different G4 states. In doing so, BRCA2 remodels the G4, facilitating the restart of stalled replication forks. In this review, we succinctly summarize the findings regarding the dynamicity of telomeric G4, emphasize its importance in maintaining telomere replication homeostasis, and the physiological consequences of losing G4 dynamicity at the telomere.


Assuntos
Proteína BRCA2 , Replicação do DNA , Quadruplex G , Telômero , Humanos , Telômero/metabolismo , Telômero/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Animais
6.
Proc Natl Acad Sci U S A ; 120(14): e2221438120, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972448

RESUMO

Converting anthropogenic CO2 to value-added products using renewable energy has received much attention to achieve a sustainable carbon cycle. CO2 electrolysis has been extensively investigated, but the products have been limited to some C1-3 products. Here, we report the integration of CO2 electrolysis with microbial fermentation to directly produce poly-3-hydroxybutyrate (PHB), a microbial polyester, from gaseous CO2 on a gram scale. This biohybrid system comprises electrochemical conversion of CO2 to formate on Sn catalysts deposited on a gas diffusion electrode (GDE) and subsequent conversion of formate to PHB by Cupriavidus necator cells in a fermenter. The electrolyzer and the electrolyte solution were optimized for this biohybrid system. In particular, the electrolyte solution containing formate was continuously circulated through both the CO2 electrolyzer and the fermenter, resulting in the efficient accumulation of PHB in C. necator cells, reaching a PHB content of 83% of dry cell weight and producing 1.38 g PHB using 4 cm2 Sn GDE. This biohybrid system was further modified to enable continuous PHB production operated at a steady state by adding fresh cells and removing PHB. The strategies employed for developing this biohybrid system will be useful for establishing other biohybrid systems producing chemicals and materials directly from gaseous CO2.

7.
Proc Natl Acad Sci U S A ; 120(18): e2211501120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094131

RESUMO

Vac8, a yeast vacuolar protein with armadillo repeats, mediates various cellular processes by changing its binding partners; however, the mechanism by which Vac8 differentially regulates these processes remains poorly understood. Vac8 interacts with Nvj1 to form the nuclear-vacuole junction (NVJ) and with Atg13 to mediate cytoplasm-to-vacuole targeting (Cvt), a selective autophagy-like pathway that delivers cytoplasmic aminopeptidase I directly to the vacuole. In addition, Vac8 associates with Myo2, a yeast class V myosin, through its interaction with Vac17 for vacuolar inheritance from the mother cell to the emerging daughter cell during cell divisions. Here, we determined the X-ray crystal structure of the Vac8-Vac17 complex and found that its interaction interfaces are bipartite, unlike those of the Vac8-Nvj1 and Vac8-Atg13 complexes. When the key amino acids present in the interface between Vac8 and Vac17 were mutated, vacuole inheritance was severely impaired in vivo. Furthermore, binding of Vac17 to Vac8 prevented dimerization of Vac8, which is required for its interactions with Nvj1 and Atg13, by clamping the H1 helix to the ARM1 domain of Vac8 and thereby preventing exposure of the binding interface for Vac8 dimerization. Consistently, the binding affinity of Vac17-bound Vac8 for Nvj1 or Atg13 was markedly lower than that of free Vac8. Likewise, free Vac17 had no affinity for the Vac8-Nvj1 and Vac8-Atg13 complexes. These results provide insights into how vacuole inheritance and other Vac8-mediated processes, such as NVJ formation and Cvt, occur independently of one another.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Citoplasma/metabolismo , Transporte Proteico , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores de Superfície Celular/metabolismo
8.
Am J Pathol ; 194(7): 1306-1316, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38588851

RESUMO

The role of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in renal cell carcinoma (RCC) progression, metastasis, and resistance to therapies has not been investigated thoroughly. Transcription factor E3 (TFE3) expression is related to a poorer prognosis and tumor microenvironment in patients with RCC. This study aimed to determine the relationship between TFE3 and the PI3K/Akt pathway. TFE3 down-regulation was achieved by transient transfection of siRNA and shRNA in UOK146 cells. TFE3 overexpression was induced by transient transfection with pcDNA3.1 encoding the constitutively active form of TFE3. The cells were treated with mammalian target of rapamycin (mTOR) and PI3K inhibitors. Western blot was performed to detect TFE3, programmed death-ligand 1, phospho-Akt, and Akt. Phospho-Akt expression increased significantly upon TFE3 down-regulation, and decreased significantly upon up-regulation. When RCC cells were treated with a PI3K inhibitor (LY294002), TFE3 expression increased and phospho-Akt expression decreased. Data from this study indicate that TFE3 plays a role in the PI3K/Akt pathway in RCC. The results of this study suggest that PI3K/Akt inhibitors may aid in the treatment of patients with RCC by affecting the tumor microenvironment.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Carcinoma de Células Renais , Neoplasias Renais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Microambiente Tumoral , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/genética , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/fisiologia , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica
9.
Nucleic Acids Res ; 51(21): 11941-11951, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37897358

RESUMO

Bacteriophages (phages) are viruses that infect bacteria and archaea. To fend off invading phages, the hosts have evolved a variety of anti-phage defense mechanisms. Gabija is one of the most abundant prokaryotic antiviral systems and consists of two proteins, GajA and GajB. GajA has been characterized experimentally as a sequence-specific DNA endonuclease. Although GajB was previously predicted to be a UvrD-like helicase, its function is unclear. Here, we report the results of structural and functional analyses of GajB. The crystal structure of GajB revealed a UvrD-like domain architecture, including two RecA-like core and two accessory subdomains. However, local structural elements that are important for the helicase function of UvrD are not conserved in GajB. In functional assays, GajB did not unwind or bind various types of DNA substrates. We demonstrated that GajB interacts with GajA to form a heterooctameric Gabija complex, but GajB did not exhibit helicase activity when bound to GajA. These results advance our understanding of the molecular mechanism underlying Gabija anti-phage defense and highlight the role of GajB as a component of a multi-subunit antiviral complex in bacteria.


Assuntos
Bacillus cereus , Bacteriófagos , Antivirais , Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , DNA , DNA Helicases/metabolismo , Proteínas , Bacillus cereus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
Am J Physiol Cell Physiol ; 327(3): C619-C633, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981606

RESUMO

Lower oxidative capacity in skeletal muscles (SKMs) is a prevailing cause of metabolic diseases. Exercise not only enhances the fatty acid oxidation (FAO) capacity of SKMs but also increases lactate levels. Given that lactate may contribute to tricarboxylic acid cycle (TCA) flux and impact monocarboxylate transporter 1 in the SKMs, we hypothesize that lactate can influence glucose and fatty acid (FA) metabolism. To test this hypothesis, we investigated the mechanism underlying lactate-driven FAO regulation in the SKM of mice with diet-induced obesity (DIO). Lactate was administered to DIO mice immediately after exercise for over 3 wk. We found that increased lactate levels enhanced energy expenditure mediated by fat metabolism during exercise recovery and decreased triglyceride levels in DIO mice SKMs. To determine the lactate-specific effects without exercise, we administered lactate to mice on a high-fat diet (HFD) for 8 wk. Similar to our exercise conditions, lactate increased FAO, TCA cycle activity, and mitochondrial respiration in the SKMs of HFD-fed mice. In addition, under sufficient FA conditions, lactate increased uncoupling protein-3 abundance via the NADH-NAD+ shuttle. Conversely, ATP synthase abundance decreased in the SKMs of HFD mice. Taken together, our results suggest that lactate amplifies the adaptive increase in FAO capacity mediated by the TCA cycle and mitochondrial respiration in SKMs under sufficient FA abundance.NEW & NOTEWORTHY Lactate administration post-exercise promotes triglyceride content loss in skeletal muscles (SKMs) and reduced body weight. Lactate enhances fatty acid oxidation in the SKMs of high-fat diet (HFD)-fed mice due to enhanced mitochondrial oxygen consumption. In addition, lactate restores the malate-aspartate shuttle, which is reduced by a HFD, and activates the tricarboxylic acid cycle (TCA) cycle in SKMs. Interestingly, supraphysiological lactate facilitates uncoupling protein-3 expression through NADH/NAD+, which is enhanced under high-fat levels in SKMs.


Assuntos
Ciclo do Ácido Cítrico , Ácidos Graxos , Ácido Láctico , Camundongos Endogâmicos C57BL , Músculo Esquelético , Obesidade , Oxirredução , Animais , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácido Láctico/metabolismo , Obesidade/metabolismo , Camundongos , Masculino , Metabolismo Energético , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias Musculares/metabolismo , Camundongos Obesos , Condicionamento Físico Animal , Respiração Celular , Mitocôndrias/metabolismo
11.
J Cell Physiol ; 239(1): 112-123, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149778

RESUMO

Lipid biosynthesis is recently studied its functions in a range of cellular physiology including differentiation and regeneration. However, it still remains to be elucidated in its precise function. To reveal this, we evaluated the roles of lysophosphatidic acid (LPA) signaling in alveolar bone formation using the LPA type 2 receptor (LPAR2) antagonist AMG-35 (Amgen Compound 35) using tooth loss without periodontal disease model which would be caused by trauma and usually requires a dental implant to restore masticatory function. In this study, in vitro cell culture experiments in osteoblasts and periodontal ligament fibroblasts revealed cell type-specific responses, with AMG-35 modulating osteogenic differentiation in osteoblasts in vitro. To confirm the in vivo results, we employed a mouse model of tooth loss without periodontal disease. Five to 10 days after tooth extraction, AMG-35 facilitated bone formation in the tooth root socket as measured by immunohistochemistry for differentiation markers KI67, Osteocalcin, Periostin, RUNX2, transforming growth factor beta 1 (TGF-ß1) and SMAD2/3. The increased expression and the localization of these proteins suggest that AMG-35 elicits osteoblast differentiation through TGF-ß1 and SMAD2/3 signaling. These results indicate that LPAR2/TGF-ß1/SMAD2/3 represents a new signaling pathway in alveolar bone formation and that local application of AMG-35 in traumatic tooth loss can be used to facilitate bone regeneration and healing for further clinical treatment.


Assuntos
Lisofosfolipídeos , Osteogênese , Receptores de Lisofosfolipídeos , Perda de Dente , Animais , Camundongos , Diferenciação Celular/fisiologia , Lisofosfolipídeos/metabolismo , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Receptores de Lisofosfolipídeos/metabolismo
12.
Plant Mol Biol ; 114(1): 7, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265485

RESUMO

KEY MESSAGE: Plant U-box E3 ligases PUB20 and PUB21 are flg22-triggered signaling components and negatively regulate immune responses. Plant U-box proteins (PUBs) constitute a class of E3 ligases that are associated with various stress responses. Among the class IV PUBs featuring C-terminal Armadillo (ARM) repeats, PUB20 and PUB21 are closely related homologs. Here, we show that both PUB20 and PUB21 negatively regulate innate immunity in plants. Loss of PUB20 and PUB21 function leads to enhanced resistance to surface inoculation with the virulent bacterium Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the resistance levels remain unaffected after infiltration inoculation, suggesting that PUB20 and PUB21 primarily function during the early defense stages. The enhanced resistance to Pst DC3000 in PUB mutant plants (pub20-1, pub21-1, and pub20-1/pub21-1) correlates with extensive flg22-triggered reactive oxygen production, strong MPK3 activation, and enhanced transcriptional activation of early immune response genes. Additionally, PUB mutant plants (except pub21-1) exhibit constitutive stomatal closure after Pst DC3000 inoculation, implying the significant role of PUB20 in stomatal immunity. Comparative analyses of flg22 responses between PUB mutants and wild-type plants reveals that the robust activation of the pattern-induced immune responses may enhance resistance against Pst DC3000. Notably, the hypersensitivity responses triggered by RPM1/avrRpm1 and RPS2/avrRpt2 are independent of PUB20 and PUB21. These results suggest that PUB20 and PUB21 knockout mutations affect bacterial invasion, likely during the early stages, acting as negative regulators of plant immunity.


Assuntos
Arabidopsis , Reconhecimento da Imunidade Inata , Imunidade Inata , Proteínas de Plantas , Penicilina V , Ligases
13.
J Cell Biochem ; 125(2): e30518, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224182

RESUMO

Excessive bone-resorbing osteoclast activity during bone remodeling is a major feature of bone diseases, such as osteoporosis. Therefore, the inhibition of osteoclast formation and bone resorption can be an effective therapeutic target for various bone diseases. Gryllus biomaculatus (GB) has recently been approved as an alternative food source because of its high nutritional value and environmental sustainability. Traditionally, GB has been known to have various pharmacological properties, including antipyretic and blood pressure-lowering activity, and it has recently been reported to have various biological activities, including protective effects against inflammation, oxidative stress, insulin resistance, and alcohol-induced liver injury. However, the effect of GB on osteoclast differentiation and bone metabolism has not yet been demonstrated. In this study, we confirmed the inhibitory effect of GB extract (GBE) on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. To determine the effect of GBE on RANKL-induced osteoclast differentiation and function, we performed TRAP and F-actin staining, as well as a bone-resorbing assay. The intracellular mechanisms of GBE responsible for the regulation of osteoclastogenesis were revealed by Western blot analysis and quantitative real-time polymerase chain reaction. We investigated the relationship between GBE and expression of osteoclast-specific molecules to further elucidate the underlying mechanisms. It was found that GBE significantly suppressed osteoclastogenesis by decreasing the phosphorylation of Akt, p38, JNK, and ERK, as well as Btk-PLCγ2 signaling, in pathways involved in early osteoclastogenesis as well as through the subsequent suppression of c-Fos, NFATc1, and osteoclastogenesis-specific marker genes. Additionally, GBE inhibited the formation of F-actin ring-positive osteoclasts and bone resorption activity of mature osteoclasts. Our findings suggest that GBE is a potential functional food and therapeutic candidate for bone diseases involving osteoclasts.


Assuntos
Reabsorção Óssea , Osteoclastos , Ligante RANK , Humanos , Actinas/metabolismo , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Ligantes , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo
14.
J Am Chem Soc ; 146(1): 377-385, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38112296

RESUMO

Mycobacterium tuberculosis (Mtb) is one of history's most successful human pathogens. By subverting typical immune responses, Mtb can persist within a host until conditions become favorable for growth and proliferation. Virulence factors that enable mycobacteria to modulate host immune systems include a suite of mannose-containing glycolipids: phosphatidylinositol mannosides, lipomannan, and lipoarabinomannan (LAM). Despite their importance, tools for their covalent capture, modification, and imaging are limited. Here, we describe a chemical biology strategy to detect and visualize these glycans. Our approach, biosynthetic incorporation, is to synthesize a lipid-glycan precursor that can be incorporated at a late-stage step in glycolipid biosynthesis. We previously demonstrated selective mycobacterial arabinan modification by biosynthetic incorporation using an exogenous donor. This report reveals that biosynthetic labeling is general and selective: it allows for cell surface mannose-containing glycolipid modification without nonspecific labeling of mannosylated glycoproteins. Specifically, we employed azido-(Z,Z)-farnesyl phosphoryl-ß-d-mannose probes and took advantage of the strain-promoted azide-alkyne cycloaddition to label and directly visualize the localization and dynamics of mycobacterial mannose-containing glycolipids. Our studies highlight the generality and utility of biosynthetic incorporation as the probe structure directs the selective labeling of distinct glycans. The disclosed agents allowed for direct tracking of the target immunomodulatory glycolipid dynamics in cellulo. We anticipate that these probes will facilitate investigating the diverse biological roles of these glycans.


Assuntos
Glicolipídeos , Mycobacterium tuberculosis , Humanos , Glicolipídeos/química , Manose/metabolismo , Lipopolissacarídeos/metabolismo , Polissacarídeos/química , Mycobacterium tuberculosis/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L135-L148, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084407

RESUMO

Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.


Assuntos
Bronquiolite Obliterante , Diacetil , Humanos , Queratina-5/metabolismo , Diacetil/metabolismo , Mecloretamina/metabolismo , Mucosa Respiratória/metabolismo , Bronquiolite Obliterante/induzido quimicamente , Bronquiolite Obliterante/metabolismo , Células Epiteliais/metabolismo
16.
Lab Invest ; 104(7): 102071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677591

RESUMO

Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is characterized by prominent tumor-infiltrating lymphocytes (TILs) and has a favorable prognosis. Tertiary lymphoid structures (TLS), characterized by ectopic aggregated lymphocytes with high-endothelial venules (HEV), are associated with favorable outcomes in various solid tumors. We hypothesized that EBVaGC, characterized by intense TILs, may be closely associated with TLS or HEV. To test this hypothesis, we digitally analyzed the TLS, HEV, and TILs in 73 surgically resected advanced EBVaGCs. For HEV, dual MECA-79 and CD31 dual immunohistochemistry were performed, and the ectopic expression of MECA-79 in tumor cells was measured. In 73 patients with EBVaGC, a high-TLS ratio was found in 29 (39.7%) cases, high-tumor-associated HEV density in 44 (60.3%) cases, and high-CD8+ TIL density in 38 (52.1%) cases. Ectopic tumor expression of MECA-79 was observed in 36 patients (49.3%) cases. A low-TLS ratio and tumor-associated HEV density were significantly associated with lymph node metastasis (P = .005 and .042, respectively). Ectopic MECA-79 expression was significantly associated with lymph node metastasis (P = .003). Patients with a low-TLS ratio (P = .038), low-HEV density (P = .042), and ectopic tumor MECA-79 expression (P = .032) had significantly worse prognoses. In conclusion, TLS ratio and HEV density affect the survival of patients with EBVaGC and may be related to the immune response that interrupts lymph node metastasis.


Assuntos
Infecções por Vírus Epstein-Barr , Linfócitos do Interstício Tumoral , Neoplasias Gástricas , Estruturas Linfoides Terciárias , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Neoplasias Gástricas/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Estruturas Linfoides Terciárias/metabolismo , Prognóstico , Infecções por Vírus Epstein-Barr/complicações , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Idoso , Adulto , Herpesvirus Humano 4 , Processamento de Imagem Assistida por Computador , Antígenos de Superfície , Proteínas de Membrana
17.
Curr Issues Mol Biol ; 46(8): 9136-9148, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39194757

RESUMO

Skin healing occurs through an intricate process called wound healing which comprises four phases: coagulation and hemostasis, inflammation, cellular proliferation, and remodeling. Chronic wounds often arise because of prolonged or excessive inflammation, which hinders the healing process and wound closure. Despite the recognized efficacy of Pogostemon cablin (patchouli) in wound healing, the precise mechanism of action of Pogostemon cablin extract (PCE) on inflammation and wound healing remains poorly understood. In this study, we investigated the effects of PCE on cell proliferation and wound healing, as well as its anti-inflammatory activity, using in vitro experiments. We found that PCE increased cell proliferation and expression of the cell proliferation marker Ki67 and accelerated wound healing in human keratinocytes through the activation of OR2AT4. Furthermore, PCE exhibited anti-inflammatory effects by decreasing the levels of pro-inflammatory cytokines interleukin-6 and -8 in lipopolysaccharide-treated and TNF-α-exposed THP-1 and HaCaT cells, respectively. Overall, these findings suggest that PCE holds therapeutic potential by promoting cell proliferation, facilitating wound healing, and exerting anti-inflammatory effects.

18.
Hum Mol Genet ; 31(7): 1082-1095, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34850884

RESUMO

Osteonecrosis of the femoral head (ONFH) involves necrosis of bone and bone marrow of the femoral head caused by ischemia with unknown etiology. Previous genetic studies on ONFH failed to produce consistent results, presumably because ONFH has various causes with different genetic backgrounds and the underlying diseases confounded the associations. Steroid-associated ONFH (S-ONFH) accounts for one-half of all ONFH, and systemic lupus erythematosus (SLE) is a representative disease underlying S-ONFH. We performed a genome-wide association study (GWAS) to identify genetic risk factors for S-ONFH in patients with SLE. We conducted a two-staged GWAS on 636 SLE patients with S-ONFH and 95 588 non-SLE controls. Among the novel loci identified, we determined S-ONFH-specific loci by comparing allele frequencies between SLE patients without S-ONFH and non-SLE controls. We also used Korean datasets comprising 148 S-ONFH cases and 37 015 controls to assess overall significance. We evaluated the functional annotations of significant variants by in silico analyses. The Japanese GWAS identified 4 significant loci together with 12 known SLE susceptibility loci. The four significant variants showed comparable effect sizes on S-ONFH compared with SLE controls and non-SLE controls. Three of the four loci, MIR4293/MIR1265 [odds ratio (OR) = 1.99, P-value = 1.1 × 10-9)], TRIM49/NAALAD2 (OR = 1.65, P-value = 4.8 × 10-8) and MYO16 (OR = 3.91, P-value = 4.9 × 10-10), showed significant associations in the meta-analysis with Korean datasets. Bioinformatics analyses identified MIR4293, NAALAD2 and MYO16 as candidate causal genes. MIR4293 regulates a PPARG-related adipogenesis pathway relevant to S-ONFH. We identified three novel susceptibility loci for S-ONFH in SLE.


Assuntos
Necrose da Cabeça do Fêmur , Lúpus Eritematoso Sistêmico , Esteroides , Carboxipeptidases/genética , Proteínas de Transporte/genética , Cabeça do Fêmur , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/complicações , Necrose da Cabeça do Fêmur/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lúpus Eritematoso Sistêmico/genética , MicroRNAs/genética , Cadeias Pesadas de Miosina/genética , Polimorfismo de Nucleotídeo Único , Esteroides/efeitos adversos
19.
Br J Cancer ; 130(12): 1979-1989, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643339

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor survival rate, largely due to the lack of early diagnosis. Although myeloid cells are crucial in the tumour microenvironment, whether their specific subset can be a biomarker of PDAC progression is unclear. METHODS: We analysed IL-22 receptor expression in PDAC and peripheral blood. Additionally, we analysed gene expression profiles of IL-10R2+/IL-22R1+ myeloid cells and the presence of these cells using single-cell RNA sequencing and murine orthotropic PDAC models, respectively, followed by examining the immunosuppressive function of IL-10R2+/IL-22R1+ myeloid cells. Finally, the correlation between IL-10R2 expression and PDAC progression was evaluated. RESULTS: IL-10R2+/IL-22R1+ myeloid cells were present in PDAC and peripheral blood. Blood IL-10R2+ myeloid cells displayed a gene expression signature associated with tumour-educated circulating monocytes. IL-10R2+/IL-22R1+ myeloid cells from human myeloid cell culture inhibited T cell proliferation. By mouse models for PDAC, we found a positive correlation between pancreatic tumour growth and increased blood IL-10R2+/IL-22R1+ myeloid cells. IL-10R2+/IL-22R1+ myeloid cells from an early phase of the PDAC model suppressed T cell proliferation and cytotoxicity. IL-10R2+ myeloid cells indicated tumour recurrence 130 days sooner than CA19-9 in post-pancreatectomy patients. CONCLUSIONS: IL-10R2+/IL-22R1+ myeloid cells in the peripheral blood might be an early marker of PDAC prognosis.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Subunidade beta de Receptor de Interleucina-10 , Células Mieloides , Recidiva Local de Neoplasia , Neoplasias Pancreáticas , Receptores de Interleucina , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/sangue , Humanos , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Camundongos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Receptores de Interleucina/genética , Células Mieloides/metabolismo , Células Mieloides/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Subunidade beta de Receptor de Interleucina-10/genética , Feminino , Masculino , Microambiente Tumoral/genética , Linhagem Celular Tumoral
20.
J Hepatol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879170

RESUMO

BACKGROUND & AIMS: Chronic HCV infection results in abnormal immunological alterations, which are not fully normalized after viral elimination by direct-acting antiviral (DAA) treatment. Herein, we longitudinally examined phenotypic, transcriptomic, and epigenetic alterations in peripheral blood regulatory T (Treg) cells from patients with chronic HCV infection before, during, and after DAA treatment. METHODS: Patients with chronic genotype 1b HCV infection who achieved sustained virologic response by DAA treatment and age-matched healthy donors were recruited. Phenotypic characteristics of Treg cells were investigated through flow cytometry analysis. Moreover, the transcriptomic and epigenetic landscapes of Treg cells were analyzed using RNA sequencing and ATAC-seq (assay for transposase-accessible chromatin with sequencing) analysis. RESULTS: The Treg cell population - especially the activated Treg cell subpopulation - was expanded in peripheral blood during chronic HCV infection, and this expansion was sustained even after viral clearance. RNA sequencing analysis revealed that viral clearance did not abrogate the inflammatory features of these Treg cells, such as Treg activation and TNF signaling. Moreover, ATAC-seq analysis showed inflammatory imprinting in the epigenetic landscape of Treg cells from patients, which remained after treatment. These findings were further confirmed by intracellular cytokine staining, demonstrating that Treg cells exhibited inflammatory features and TNF production in chronic HCV infection that were maintained after viral clearance. CONCLUSIONS: Overall, our results showed that during chronic HCV infection, the expanded Treg cell population acquired inflammatory features at phenotypic, transcriptomic, and epigenetic levels, which were maintained even after successful viral elimination by DAA treatment. Further studies are warranted to examine the clinical significance of sustained inflammatory features in the Treg cell population after recovery from chronic HCV infection. IMPACT AND IMPLICATIONS: During chronic HCV infection, several immune components are altered both quantitatively and qualitatively. The recent introduction of direct-acting antivirals has led to high cure rates. Nevertheless, we have demonstrated that inflammatory features of Treg cells are maintained at phenotypic, transcriptomic, and epigenetic levels even after successful DAA treatment. Further in-depth studies are required to investigate the long-term clinical outcomes of patients who have recovered from chronic HCV infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA