Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Dev Biol ; 390(2): 231-46, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24662046

RESUMO

The vertebrate head-trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head-trunk interface.


Assuntos
Evolução Biológica , Movimento Celular/fisiologia , Ectoderma/fisiologia , Hipofaringe/embriologia , Mesoderma/fisiologia , Morfogênese/fisiologia , Vertebrados/embriologia , Animais , Eletroporação , Cabeça/anatomia & histologia , Cabeça/embriologia , Imuno-Histoquímica , Hibridização In Situ , Microcirurgia , Crista Neural/fisiologia , Especificidade da Espécie , Tronco/anatomia & histologia , Tronco/embriologia
2.
J Anat ; 227(3): 361-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26278933

RESUMO

The chicken is a well-established model for amniote (including human) skeletal muscle formation because the developmental anatomy of chicken skeletal muscle matches that of mammals. The accessibility of the chicken in the egg as well as the sequencing of its genome and novel molecular techniques have raised the profile of this model. Over the years, a number of regulatory and marker genes have been identified that are suited to monitor the progress of skeletal myogenesis both in wildtype and in experimental embryos. However, in the various studies, differing markers at different stages of development have been used. Moreover, contradictory results on the hierarchy of regulatory factors are now emerging, and clearly, factors need to be able to cooperate. Thus, a reference paper describing in detail and side-by-side the time course of marker gene expression during avian myogenesis is needed. We comparatively analysed onset and expression patterns of the key markers for the chicken immature paraxial mesoderm, for muscle-competent cells, for cells committed to myogenesis and for cells entering terminal differentiation. We performed this analysis from stages when the first paraxial mesoderm is being laid down to the stage when mesoderm formation comes to a conclusion. Our data show that, although the sequence of marker gene expression is the same at the various stages of development, the timing of the expression onset is quite different. Moreover, marker gene expression in myogenic cells being deployed from the dorsomedial and ventrolateral lips of the dermomyotome is different from those being deployed from the rostrocaudal lips, suggesting different molecular programs. Furthermore, expression of Myosin Heavy Chain genes is overlapping but different along the length of a myotube. Finally, Mef2c is the most likely partner of Mrf proteins, and, in contrast to the mouse and more alike frog and zebrafish fish, chicken Mrf4 is co-expressed with MyoG as cells enter terminal differentiation.


Assuntos
Diferenciação Celular/fisiologia , Mesoderma/embriologia , Desenvolvimento Muscular/fisiologia , Proteínas Musculares/genética , Fatores de Regulação Miogênica/genética , Animais , Biomarcadores/metabolismo , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Modelos Animais , Morfogênese , Proteínas Musculares/metabolismo , Fatores de Regulação Miogênica/metabolismo , Cadeias Pesadas de Miosina/metabolismo
3.
BMC Evol Biol ; 14: 157, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25099342

RESUMO

BACKGROUND: Dacts are multi-domain adaptor proteins. They have been implicated in Wnt and Tgfß signaling and serve as a nodal point in regulating many cellular activities. Dact genes have so far only been identified in bony vertebrates. Also, the number of Dact genes in a given species, the number and roles of protein motifs and functional domains, and the overlap of gene expression domains are all not clear. To address these problems, we have taken an evolutionary approach, screening for Dact genes in the animal kingdom and establishing their phylogeny and the synteny of Dact loci. Furthermore, we performed a deep analysis of the various Dact protein motifs and compared the expression patterns of different Dacts. RESULTS: Our study identified previously not recognized dact genes and showed that they evolved late in the deuterostome lineage. In gnathostomes, four Dact genes were generated by the two rounds of whole genome duplication in the vertebrate ancestor, with Dact1/3 and Dact2/4, respectively, arising from the two genes generated during the first genome duplication. In actinopterygians, a further dact4r gene arose from retrotranscription. The third genome duplication in the teleost ancestor, and subsequent gene loss in most gnathostome lineages left extant species with a subset of Dact genes. The distribution of functional domains suggests that the ancestral Dact function lied with Wnt signaling, and a role in Tgfß signaling may have emerged with the Dact2/4 ancestor. Motif reduction, in particular in Dact4, suggests that this protein may counteract the function of the other Dacts. Dact genes were expressed in both distinct and overlapping domains, suggesting possible combinatorial function. CONCLUSIONS: The gnathostome Dact gene family comprises four members, derived from a chordate-specific ancestor. The ability to control Wnt signaling seems to be part of the ancestral repertoire of Dact functions, while the ability to inhibit Tgfß signaling and to carry out specialized, ortholog-specific roles may have evolved later. The complement of Dact genes coexpressed in a tissue provides a complex way to fine-tune Wnt and Tgfß signaling. Our work provides the basis for future structural and functional studies aimed at unraveling intracellular regulatory networks.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cordados/genética , Evolução Molecular , Transdução de Sinais , Animais , Cordados/metabolismo , Humanos , Filogenia , Sintenia , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt
4.
Biol Reprod ; 86(5): 151, 1-10, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22238283

RESUMO

Impairment of pelvic organ support has been described in mice with genetic modifications of the proteins involved in elastogenesis, such as lysyl oxidase-like 1 (LOXL1) and fibulin 5. During pregnancy, elastic fiber-enriched pelvic tissues are modified to allow safe delivery. In addition, the mouse pubic symphysis is remodeled in a hormone-controlled process that entails the modification of the fibrocartilage into an interpubic ligament (IpL) and the relaxation of this ligament. After first parturition, recovery occurs to ensure pelvic tissue homeostasis. Because ligaments are the main supports of the pelvic organs, this study aimed to evaluate elastogenesis in the IpL during mouse pregnancy and postpartum. Accordingly, virgin, pregnant, and postpartum C57BL/6 mice were studied using light, confocal, and transmission electron microscopy as well as Western blots and real-time PCR. Female mice exhibited the separation of the pubic bones and the formation, relaxation, and postpartum recovery of the IpL. By the time the IpL was formed, the elastic fibers had increased in profile length and diameter, and they consisted of small conglomerates of amorphous material distributed among the bundles of microfibrils. Our analyses also indicated that elastin/tropoelastin, fibrillin 1, LOXL1/Loxl1, and fibulin 5 were spatially and temporally regulated, suggesting that these molecules may contribute to the synthesis of new elastic fibers during IpL development. Overall, this work revealed that adult elastogenesis may be important to assure the elasticity of the pelvic girdle during preparation for parturition and postpartum recovery. This finding may contribute to our understanding of pathological processes involving elastogenesis in the reproductive tract.


Assuntos
Tecido Elástico/metabolismo , Período Pós-Parto/metabolismo , Sínfise Pubiana/metabolismo , Aminoácido Oxirredutases/metabolismo , Animais , Tecido Elástico/citologia , Elasticidade , Elastina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibrilina-1 , Fibrilinas , Ligamentos/citologia , Ligamentos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Pelve , Gravidez , Sínfise Pubiana/citologia , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA