Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Inflammopharmacology ; 32(1): 603-627, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847473

RESUMO

BACKGROUND: Morbidity and mortality rates associated with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are high (30-40%). Nuclear factor-kappa B (NF-κB) is a transcription factor, associated with transcription of numerous cytokines leading to cytokine storm, and thereby, plays a major role in ALI/ARDS and in advanced COVID-19 syndrome. METHODS: Considering the role of NF-κB in ALI, cost-effective in silico approaches were utilized in the study to identify potential NF-κB inhibitor based on the docking and pharmacokinetic results. The identified compound was then pharmacologically validated in lipopolysaccharide (LPS) rodent model of acute lung injury. LPS induces ALI by altering alveolar membrane permeability, recruiting activated neutrophils and macrophages to the lungs, and compromising the alveolar membrane integrity and ultimately impairs the gaseous exchange. Furthermore, LPS exposure is associated with exaggerated production of various proinflammatory cytokines in lungs. RESULTS: Based on in silico studies Olopatadine Hydrochloride (Olo), an FDA-approved drug was found as a potential NF-κB inhibitor which has been reported for the first time, and considered further for the pharmacological validation. Intraperitoneal LPS administration resulted in ALI/ARDS by fulfilling 3 out of the 4 criteria described by ATS committee (2011) published workshop report. However, treatment with Olo attenuated LPS-induced elevation of proinflammatory markers (IL-6 and NF-κB), oxidative stress, neutrophil infiltration, edema, and damage in lungs. Histopathological studies also revealed that Olo treatment significantly ameliorated LPS-induced lung injury, thus conferring improvement in survival. Especially, the effects produced by Olo medium dose (1 mg/kg) were comparable to dexamethasone standard. CONCLUSION: In nutshell, inhibition of NF-κB pathway by Olo resulted in protection and reduced mortality in LPS- induced ALI and thus has potential to be used clinically to arrest disease progression in ALI/ARDS, since the drug is already in the market. However, the findings warrant further extensive studies, and also future studies can be planned to elucidate its role in COVID-19-associated ARDS or cytokine storm.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Síndrome do Desconforto Respiratório , Humanos , NF-kappa B , Lipopolissacarídeos/farmacologia , Cloridrato de Olopatadina , Síndrome da Liberação de Citocina , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Proteínas I-kappa B , Citocinas
2.
Inflammopharmacology ; 29(2): 499-511, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33517508

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative and hyperkinetic movement disorder. Decreased activity of cAMP-responsive element-binding protein (CREB) is thought to contribute to the death of striatal medium spiny neurons in HD. The present study has been designed to explore the possible role of roflumilast against qunilonic acid (QA) induced neurotoxicity in rats intending to investigate whether it inhibits the neuroinflammatory response through activation of the cAMP/CREB/BDNF signaling pathway. QA was microinjected (200 nmol/2 µl, bilaterally) through the intrastriatal route in the stereotaxic apparatus. Roflumilast (0.5, 1, and 2 mg/kg, orally) once-daily treatment for 21 days significantly improved locomotor activity in actophotometer, motor coordination in rotarod, and impaired gait performance in narrow beam walk test. Moreover, roflumilast treatment significantly attenuated oxidative and nitrosative stress (p < 0.05) through attenuating lipid peroxidation nitrite concentration and enhancing reduced glutathione, superoxide dismutase, and catalase levels. Furthermore, roflumilast also significantly decreased elevated pro-inflammatory cytokines like TNF-α (p < 0.01), IL-6 (p < 0.01), IFN-γ (p < 0.05), NF-κB (p < 0.05) and significantly increased BDNF(p < 0.05) in the striatum and cortex of rat brain. The results further demonstrated that roflumilast effectively increased the gene expression of cAMP(p < 0.05), CREB(p < 0.05) and decreased the gene expression of PDE4 (p < 0.05) in qRT-PCR. These results conclusively depicted that roflumilast could be a potential candidate as an effective therapeutic agent in the management of HD through the cAMP/CREB/BDNF signaling pathway.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Doença de Huntington/tratamento farmacológico , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Aminopiridinas/administração & dosagem , Animais , Benzamidas/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclopropanos/administração & dosagem , Ciclopropanos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Doença de Huntington/fisiopatologia , Inflamação/patologia , Masculino , NF-kappa B/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ácido Quinolínico/toxicidade , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
3.
Toxicol Appl Pharmacol ; 402: 115124, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652086

RESUMO

Atypical antipsychotics (AAPs) have the tendency of inducing severe metabolic alterations like obesity, diabetes mellitus, insulin resistance, dyslipidemia and cardiovascular complications. These alterations have been attributed to altered hypothalamic appetite regulation, energy sensing, insulin/leptin signaling, inflammatory reactions and active reward anticipation. Line of evidence suggests that transient receptor potential vanilloid type 1 and 3 (TRPV1 and TRPV3) channels are emerging targets in treatment of obesity, diabetes mellitus and could modulate feed intake. The present study was aimed to investigate the putative role TRPV1/TRPV3 in olanzapine-induced metabolic alterations in mice. Female BALB/c mice were treated with olanzapine for six weeks to induce metabolic alterations. Non-selective TRPV1/TRPV3 antagonist (ruthenium red) and selective TRPV1 (capsazepine) and TRPV3 antagonists (2,2-diphenyltetrahydrofuran or DPTHF) were used to investigate the involvement of TRPV1/TRPV3 in chronic olanzapine-induced metabolic alterations. These metabolic alterations were differentially reversed by ruthenium red and capsazepine, while DPTHF didn't show any significant effect. Olanzapine treatment also altered the mRNA expression of hypothalamic appetite-regulating and nutrient-sensing factors, inflammatory genes and TRPV1/TRPV3, which were reversed with ruthenium red and capsazepine treatment. Furthermore, olanzapine treatment also increased expression of TRPV1/TRPV3 in nucleus accumbens (NAc), TRPV3 expression in ventral tegmental area (VTA), which were reversed by the respective antagonists. However, DPTHF treatment showed reduced feed intake in olanzapine treated mice, which might be due to TRPV3 specific antagonism and reduced hedonic feed intake. In conclusion, our results suggested the putative role TRPV1 in hypothalamic dysregulations and TRPV3 in the mesolimbic pathway; both regulate feeding in olanzapine treated mice.


Assuntos
Regulação do Apetite/efeitos dos fármacos , Inflamação/metabolismo , Olanzapina/farmacologia , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Corantes/administração & dosagem , Corantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Feminino , Furanos/administração & dosagem , Furanos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipotálamo/efeitos dos fármacos , Inflamação/genética , Metformina/administração & dosagem , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora , Rutênio Vermelho/administração & dosagem , Rutênio Vermelho/farmacologia , Fármacos do Sistema Sensorial/administração & dosagem , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/genética
4.
Can J Physiol Pharmacol ; 98(6): 383-390, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31935134

RESUMO

Pregnane X receptors (PXRs) regulate the expression of ATP-binding cassette proteins transporters and organic anion transporting polypeptides responsible for influx/efflux of xenobiotics across the brain. Ligand activation of PXR augments the expression of P-gp and promotes amyloid-ß clearance across the blood-brain barrier. Dementia was induced in mice by intacerebroventricular administration of streptozotocin (STZ) followed by treatment with meclizine, a PXR agonist, and subsequently exposed to the Morris water maze test and biochemical and histopathological analysis to evaluate the effect on cognition. STZ-treated mice exhibited significant enhancement in brain thiobarbituric acid reactive species, interleukin-1ß, tumour necrosis factor-α, myeloperoxidase, and acetylcholinestrase activity in addition to diminution in glutathione levels and superoxide dismutase activity in comparison to untreated mice. Administration of meclizine to STZ mice recuperated cognition and biochemical alterations. Concomitant administration of ketoconazole, a PXR antagonist, with meclizine prevented the protective effects. The upshots of our study proclaim that meclizine protects cognitive deficits by virtue of its antioxidant, anticholinesterase, and antiinflammatory properties. Results also signify the potential of PXR in neuroprotective actions of meclizine in dementia.


Assuntos
Demência/induzido quimicamente , Demência/complicações , Meclizina/farmacologia , Transtornos da Memória/complicações , Transtornos da Memória/tratamento farmacológico , Receptor de Pregnano X/metabolismo , Estreptozocina/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Glutationa/metabolismo , Interleucina-1beta/metabolismo , Masculino , Meclizina/uso terapêutico , Transtornos da Memória/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Toxicol Appl Pharmacol ; 378: 114643, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254565

RESUMO

Despite benefits, atypical antipsychotics produce troublesome metabolic adverse effects particularly hyperphagia, weight gain, dyslipidemia, hyperglycemia and insulin resistance which further develop metabolic and cardiac complications. The animal models studied for antipsychotic-induced weight gain only focused on metabolic alteration in antipsychotics treated animals but none has considered psychosis as a predisposing factor which mimics the clinical condition. The present study was aimed to rule out the impact of pharmacologically induced psychosis-like phenotype on metabolic alterations induced by antipsychotics. Female BALB/c mice (weighing 18-23 g) exhibiting schizophrenia-like behavior after 5 days of MK-801 treatment (0.1 mg/kg, i.p.) were administered olanzapine (3 and 6 mg/kg, per oral) and risperidone (2 and 4 mg/kg, per oral) for six weeks. Acute as well as chronic treatment with olanzapine and risperidone treatment significantly reduced locomotion, increased feed intake and body weight in a time-dependent manner, which confirms the face validity of the animal model. Olanzapine (6 mg/kg) treatment significantly altered glucose and lipid homeostasis which was further accompanied by elevated levels of proinflammatory cytokines, ghrelin and leptin. These metabolic and biochemical alterations have demonstrated construct validity. Further, no significant difference was observed in the metabolic parameters in control and schizophrenic mice treated with olanzapine which confers that antipsychotic-induced metabolic alterations are independent of psychosis. Our study concluded that six-week olanzapine (6 mg/kg) treatment in control mice induced most of the clinically relevant physiological, biochemical and metabolic alterations (clinically relevant), that is independent of pharmacologically-induced psychosis.


Assuntos
Antipsicóticos/efeitos adversos , Transtornos Psicóticos/metabolismo , Animais , Antipsicóticos/farmacologia , Peso Corporal/efeitos dos fármacos , Feminino , Grelina/metabolismo , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Olanzapina/farmacologia , Transtornos Psicóticos/tratamento farmacológico , Risperidona/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Aumento de Peso/efeitos dos fármacos
6.
Toxicol Appl Pharmacol ; 355: 257-268, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30017640

RESUMO

Oxido-inflammatory aberrations play a substantial role in the pathophysiology of depression. Oxido-inflammatory stress increases catabolism of tryptophan into kynurenine which leads to imbalance in kynurenine and serotonin levels in the brain. Naringenin a flavonoid, has been reported to possess antidepressant property by restoring serotonin and noradrenaline levels in the brain. Its effects on oxido-inflammatory aberrations in depression has not been investigated. With this background, the present study was designed to investigate the antidepressant-like potential of naringenin in olfactory bulbectomy (OBX)-induced neuroinflammation, oxidative stress, altered kynurenine pathway, and behavioural deficits in BALB/c mice. OBX-mice showed depression-like behavioural alterations characterized by hyperactivity in open field, increased immobility time in forced swim test and decreased sucrose preference. After 14 days, OBX-mice were treated by gavage with naringenin (25, 50 and 100 mg/kg) and fluoxetine (5 mg/kg) for two weeks. Naringenin significantly ameliorated depression-like behavioural alterations. Naringenin significantly restored corticosterone levels in serum and antioxidant enzymes (Catalase, SOD GSH), nitrite and MDA in cerebral cortex and hippocampus showing its anti-stress and antioxidant property. Naringenin also significantly decreased elevated pro-inflammatory cytokines like IL-1ß, IL-6, TNF-α and NF-Òß levels. Naringenin also significantly increased neurotrophic growth factor like BDNF. Naringenin reversed altered levels of tryptophan, serotonin, 5-Hydroxyindole acetic acid and kynurenine in hippocampus and cortex. A positive correlation was found between KYN/TRP ratio and proinflammatory parameters while endogenous antioxidants were negatively correlated. In conclusion, naringenin showed potent neuroprotective effect in depression comparable to the fluoxetine by restoring alterations in kynurenine pathway via its antioxidant and anti-inflammatory potential.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Antagonistas de Estrogênios/farmacologia , Flavanonas/farmacologia , Inflamação/prevenção & controle , Bulbo Olfatório/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Triptofano/metabolismo , Animais , Antidepressivos de Segunda Geração/farmacologia , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Citocinas/metabolismo , Depressão/psicologia , Fluoxetina/farmacologia , Cinurenina/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora/efeitos dos fármacos
7.
J Microencapsul ; 35(1): 49-61, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29308689

RESUMO

OBJECTIVES: Curcumin (Cur) exhibits weak microbicidal activity owing to high lipophilicity and low cell permeability. Therefore, in the present investigation, Cur was iodinated using elemental iodine (I2) to synthesise Cur-I2 powder that was later formulated as Cur-I2 dermal cream and characterised in vitro for antimicrobial and antioxidant activities. METHODS AND RESULTS: Electrophilic addition of I2 saturated the olefinic bonds of Cur, as confirmed by UV/visible spectroscopy, FT-IR, 1H NMR and DSC techniques. In addition, in vitro skin permeation and retention analysis indicated that Cur-I2 cream followed the first order and Higuchi model for drug release through the rat skin. The minimum inhibitory concentration (MIC) of Cur-I2 powder was measured to be 60 and 90 µg/ml significantly (p < 0.05) lower than 150 and 120 µg/ml of Cur against Staphylococcus aureus and Escherichia coli, respectively. Moreover, Cur-I2 also exhibited strong antioxidant potential. CONCLUSIONS: Cur-I2 cream warrants further in vivo study to scale up the technology for clinical translation.


Assuntos
Anti-Infecciosos , Antioxidantes , Curcumina , Escherichia coli/crescimento & desenvolvimento , Hidrocarbonetos Iodados , Creme para a Pele , Staphylococcus aureus/crescimento & desenvolvimento , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Curcumina/química , Curcumina/farmacologia , Hidrocarbonetos Iodados/química , Hidrocarbonetos Iodados/farmacologia , Creme para a Pele/química , Creme para a Pele/farmacologia
8.
Inflammopharmacology ; 24(6): 319-334, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27757590

RESUMO

TRP channels have been discovered as a specialized group of somatosensory neurons involved in the detection of noxious stimuli. Desensitization of TRPV1 located on dorsal root and trigeminal ganglia exhibits analgesic effect and makes it potential therapeutic target for treatment of neuropathic pain. With this background, the present study was aimed to investigate the protective effect of niflumic acid, a TRPV1 modulator, on stavudine (STV)-induced neuropathic pain in rats. Stavudine (50 mg/kg) was administered intravenously via tail vein in rats to induce neuropathic pain. Various behavioral tests were performed to access neuropathic pain (hyperalgesia and allodynia) on 7th, 14th, 21st, and 28th days. Electrophysiology (motor nerve conduction velocity; MNCV) and biochemical estimations were conducted after 28th day. Niflumic acid (10, 15, and 20 mg/kg) was administered intraperitoneally and evaluated against behavioral, electrophysiological (MNCV), and biochemical alterations in stavudine-treated rats. Pregabalin (30 mg/kg) was taken as reference standard and administered intraperitoneally. Four weeks after stavudine injection, rats developed behavioral, electrophysiological (MNCV), and biochemical (oxidative, nitrosative stress, and inflammatory cytokines, TRPV1) alterations. Niflumic acid restored core and associated symptoms of peripheral neuropathy by suppressing oxidative-nitrosative stress, inflammatory cytokines (TNF-α, IL-1ß) and TRPV1 level in stavudine-induced neuropathic pain in rats. Pharmacological efficacy of niflumic acid (20 mg/kg) was equivalent to pregabalin (30 mg/kg). In conclusion, niflumic acid attenuates STV-induced behavioral, electrophysiological and biochemical alterations by manipulating TRP channel activity in two manners: (1) direct antagonistic action against TRPV1 channels and (2) indirect inhibition of TRP channels by blocking oxidative and inflammatory surge. Therefore, NA can be developed as a potential pharmacotherapeutic adjunct for antiretroviral drug-induced neuropathy.


Assuntos
Analgésicos/uso terapêutico , Neuralgia/tratamento farmacológico , Ácido Niflúmico/uso terapêutico , Estavudina/toxicidade , Canais de Cátion TRPV/antagonistas & inibidores , Analgésicos/administração & dosagem , Animais , Biomarcadores/sangue , Relação Dose-Resposta a Droga , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Interleucina-1beta/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Ácido Niflúmico/administração & dosagem , Nitritos/sangue , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/sangue
9.
Neuropharmacology ; 215: 109169, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35753430

RESUMO

Kynurenine pathway, a neuroimmunological pathway plays a substantial role in depression. Consistently, increased levels of neurotoxic metabolite of kynurenine pathway; quinolinic acid (QA) found in the suicidal patients and remitted major depressive patients. QA, an endogenous modulator of N-methyl-d-aspartate receptor is produced by microglial cells, may serve as a potential candidate for a link between antioxidant defence system and immune changes in depression. Further, nuclear factor (erythroid-derived 2) like 2 (Nrf2), an endogenous antioxidant transcription factor plays a significant role in maintaining antioxidant homeostasis during basal and stress conditions. The present study was designed to explore the effects of KMO-inhibition (Kynurenine monooxygenase) and association of reduced QA on Keap1/Nrf2/ARE pathway activity in olfactory bulbectomized mice (OBX-mice). KMO catalysis the neurotoxic branch of kynurenine pathway directing the synthesis of QA. KMO inhibitionshowed significant reversal of depressive-like behaviour, restored Keap-1 and Nrf2 mRNA expression, and associated antioxidant levels in cortex and hippocampus of OBX-mice. KMO inhibition also increased PI3K/AKT mRNA expression in OBX-mice. KMO inhibition and associated reduced QA significantly decreased inflammatory markers, kynurenine and increased the 5-HT, 5-HIAA and tryptophan levels in OBX-mice. Furthermore, molecular docking studies has shown good binding affinity of QA towards ubiquitin proteasome complex and PI3K protein involved in Keap-1 dependent and independent proteasome degradation of Nrf2 respectively supporting our in-vivo findings. Hence, QA might act as pro-oxidant through downregulating Nrf2/ARE pathway along with modulating other pathways and KMO inhibition could be a potential therapeutic target for depression treatment.


Assuntos
Transtorno Depressivo Maior , Ácido Quinolínico , Animais , Antioxidantes , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ácido Quinolínico/metabolismo , RNA Mensageiro
10.
Front Endocrinol (Lausanne) ; 12: 771575, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912298

RESUMO

Neuropsychiatric disorders (NPDs) are a huge burden to the patient, their family, and society. NPDs have been greatly associated with cardio-metabolic comorbidities such as obesity, type-2 diabetes mellitus, dysglycaemia, insulin resistance, dyslipidemia, atherosclerosis, and other cardiovascular disorders. Antipsychotics, which are frontline drugs in the treatment of schizophrenia and off-label use in other NPDs, also add to this burden by causing severe metabolic perturbations. Despite decades of research, the mechanism deciphering the link between neuropsychiatric and metabolic disorders is still unclear. In recent years, transient receptor potential Ankyrin 1 (TRPA1) channel has emerged as a potential therapeutic target for modulators. TRPA1 agonists/antagonists have shown efficacy in both neuropsychiatric disorders and appetite regulation and thus provide a crucial link between both. TRPA1 channels are activated by compounds such as cinnamaldehyde, allyl isothiocyanate, allicin and methyl syringate, which are present naturally in food items such as cinnamon, wasabi, mustard, garlic, etc. As these are present in many daily food items, it could also improve patient compliance and reduce the patients' monetary burden. In this review, we have tried to present evidence of the possible involvement of TRPA1 channels in neuropsychiatric and metabolic disorders and a possible hint towards using TRPA1 modulators to target appetite, lipid metabolism, glucose and insulin homeostasis and inflammation associated with NPDs.


Assuntos
Encefalopatias Metabólicas/metabolismo , Transtornos Mentais/metabolismo , Canal de Cátion TRPA1/metabolismo , Encefalopatias Metabólicas/complicações , Humanos , Transtornos Mentais/complicações
11.
Neurotoxicology ; 84: 184-197, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774066

RESUMO

Parkinson's disease (PD), a common neurodegenerative motor disorder characterized by striatal dopaminergic neuronal loss and localized neuroinflammation in the midbrain region. Activation of microglia is associated with various inflammatory mediators and Kynurenine pathway (KP) being one of the major regulator of immune response, is involved in the neuroinflammatory and neurotoxic cascade in PD. In the current study, 1-Methyltryptophan (1-MT), an Indolamine-2,3-dioxygenase-1 (IDO-1) inhibitor was tested at different doses (2.5 mg/kg, 5 mg/kg and 10 mg/kg) for its effect on behavioral parameters, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, neurotransmitter levels, biochemical and behavioral alterations in unilateral 6-OHDA (3 µg/µL) murine model of PD. The results showed improved locomotion in open field test and motor coordination in rota-rod, reduced oxidative stress, neuroinflammatory markers (TNF-α, IFN-γ, IL-6), mitochondrial dysfunction and neuronal apoptosis (caspase-3). Also, restoration of neurotransmitter levels (dopamine and homovanillic acid) in the striatum and increased striatal BDNF levels were observed. Overall findings suggest that 1-MT could be a potential candidate for further studies to explore its possibility as an alternative in the pharmacotherapy of PD.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Triptofano/análogos & derivados , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/fisiologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Triptofano/farmacologia , Triptofano/uso terapêutico
12.
Biomed Pharmacother ; 133: 110891, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227700

RESUMO

Severe acute respiratory syndrome (SARS) develops within 3-14 days when CoV2 invades epithelial, myeloid cells in the nasopharynx and pneumocytes in the respiratory tract through angiotensin converting enzyme (ACE2). Infection swiftly disseminates to gastrointestinal, cardiovascular, renal organs as well as immune system to deregulate their normal functioning through unique and distinct mechanisms. The health system and economy has been intensely thwarted by the rapid spread and exorbitant mortality caused by COVID-19 disease across the globe. The acute progression of the disease and high infection rate pose an enormous challenge for its therapeutic management and critical care. The viral structure, genome and proteome have been deciphered which yielded cues for targeting already available therapeutic entities. More than 200 compounds have been screened and till date approximately 69 therapeutic agents are undergoing clinical trials across the world. Among these, remedesivir (RMD), chloroquine (CQ), hydroxychloroquine (HCQ), noscapine (NOS) and heparin have demonstrated fairly promising results in preclinical and clinical studies. Recently, RMD has been approved by USFDA for the management of COVID 19. However, intense research is going on to screen and ace the 'magic bullets' for the management of SARS-CoV2 infection worldwide. The current review illustrates the plausible therapeutic targets in SARS-CoV2 important for inhibition of virus cycle. In addition, the role of RMD, CQ, HCQ, NOS and heparin in combating infection has been addressed. The importance of vitamin C and D supplements as adjunct therapies in the prevention of SARS-CoV2 virus infection have also been summarized.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , COVID-19/transmissão , Cloroquina/farmacologia , Humanos , Hidroxicloroquina/farmacologia , Imunoterapia , SARS-CoV-2/efeitos dos fármacos
13.
IBRO Rep ; 9: 85-95, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32760845

RESUMO

OBJECTIVE: In attempt to conquer the major concerns of oral duloxetine hydrochloride (like low bioavailability, intolerable side-effects and no regeneration of demyelinated nerve fibres) for the management of chemotherapy-induced peripheral neuropathy (CIPN), an alternative delivery of duloxetine hydrochloride was aimed for in-vivo optimization. METHODS: A film forming dermal gel consisting of duloxetine hydrochloride was formulated and enriched with methylcobalamin and geranium oil. The formulated gel successfully qualified the various pharmaceutical characteristics of gel. Administration of paclitaxel (8 mg/kg/i.p. in four divided doses) for 4 alternate days induced the symptoms of peripheral neuropathy in rats. On 14th day, the responses to noxious stimulus (mechanical hyperalgesia, cold allodynia, and heat hyperalgesia) were increased and reached to its maximum. Thereafter, drug treatment with formulated dermal gel and oral duloxetine hydrochloride (30 mg/kg, once daily) was initiated for 2 weeks in different group of animals. On the 28th day animals were sacrificed to isolate sciatic nerve, to assess biochemical changes (TBARS, reduced GSH, total protein, TNF-α, IL-6) and for histopathological examinations of nerve sections using Hematoxylin-Eosin and Toludine blue staining methods. RESULTS: Application of formulated dermal gel to paclitaxel-treated rats significantly improved paw-withdrawal latency responses during noxious stimulus testing, reduced the levels of TBARS, TNF-α, IL-6 and elevated the levels of reduced GSH as compared to paclitaxel treated rats. Histographs also indicated marked regeneration of the damaged nerve fibers. Topical delivery of duloxetine hydrochloride produced similar results in disparity to oral route. However, no significant disparity in responses was obtained with twice application of formulated dermal gel when compared to once daily application. CONCLUSION: Tremendous recovery from nociception, oxidation and inflammation in addition to nerve degeneration was achieved through dermal application of duloxetine hydrochloride in peripheral neuropathy.

14.
Life Sci ; 247: 117442, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32081663

RESUMO

Transient receptor potential vanilloid type 1 (TRPV1) channels are emerging therapeutic targets for metabolic disorders. Berberine, which is a modulator of TRPV1, has proven antiobesity and antidiabetic potentials. The present study was aimed to investigate the protective effects of berberine in olanzapine-induced alterations in hypothalamic appetite control, inflammation and metabolic aberrations in mice targeting TRPV1 channels. Female BALB/c mice (18-23 g) were treated with olanzapine (6 mg/kg, p.o.) for six weeks to induce metabolic alterations, while berberine (100 and 200 mg/kg, p.o.) and metformin (100 mg/kg, p.o) were used as test and standard interventions respectively. Weekly assessment of feed-water intake, body temperature and body weight was done, while locomotion was measured at the end of week 1 and 6. Serum glucose and lipid profile were assessed by biochemical methods, while other serum biomarkers were assessed by ELISA. qPCR was used to quantify the mRNA expression in the hypothalamus. Olanzapine treatment significantly increased the feed intake, weight gain, adiposity index, while reduced body temperature and locomotor activity which were reversed by berberine treatment. Berberine treatment reduced serum ghrelin and leptin levels as well decrease in hypothalamic mRNA expression of orexigenic neuropeptides, inflammatory markers and ghrelin receptor in olanzapine-treated mice. Olanzapine treatment increased expression of TRPV1/TRPV3 in the hypothalamus which was significantly decreased by berberine treatment. Our results suggest that berberine, by TRPV1/TRPV3 modulation, attenuated the olanzapine-induced metabolic alterations in mice. Hence berberine supplementation in psychiatric patients could be a preventive approach to reduce the metabolic adverse effects of antipsychotics.


Assuntos
Antipsicóticos/uso terapêutico , Berberina/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Olanzapina/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Antipsicóticos/efeitos adversos , Berberina/efeitos adversos , Temperatura Corporal , Peso Corporal , Citocinas/metabolismo , Ingestão de Líquidos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/sangue , Grelina/metabolismo , Hipotálamo/metabolismo , Leptina/sangue , Leptina/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular/métodos , Neuropeptídeos/metabolismo , Obesidade , RNA Mensageiro , Transdução de Sinais , Canais de Cátion TRPV/genética , Resultado do Tratamento
15.
Colloids Surf B Biointerfaces ; 194: 111171, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32569887

RESUMO

Immunoadjuvants are added to the vaccines in order to enhance and prolong the antigen specific immune responses when used in consolidation with specific vaccine antigens. This permits the use of antigen in lower quantity and allows immunization protocols practicing the vaccine with smaller doses. Self-healing hydrogels have the ability to heal the damages instinctively and reinstate its framework to ordinariness in absence of external stimuli. Moreover, self-healing hydrogel having various properties such as shear-thinning and reversible sol-gel transformation properties allow it to be readily delivered via injection. Therefore, in the present review, self- healing hydrogel is projected to be used as a carrier for sustained release of peptide and as an analogous to immunoadjuvant. The sustained release property of self-healing hydrogel may be credited to the changes in the structure in response to internal or external stimuli. In addition to the huge potential of stimuli-responsive self-healing hydrogels, they also exhibit good mechanical properties. These properties make self-healing hydrogel as a smart material in delivering the vaccines. Moreover, we have also summarized diverse range of physical and chemical reactions reported for the scale-up of self-healing hydrogels in this review.


Assuntos
Adjuvantes Imunológicos , Hidrogéis , Injeções , Vacinas de Subunidades Antigênicas , Cicatrização
16.
Pharmacol Rep ; 70(1): 161-171, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29367103

RESUMO

BACKGROUND: Studies have signified that high serum cholesterol plays an intriguing role in amyloid ß metabolism and accumulation. Ligand activation of pregnane x receptors (PXRs), up-regulates the expression of P- glycoprotein and has a crucial role in amyloid ß efflux. The present study has been undertaken to investigate the effect of forskolin, a PXR agonist in experimental dementia. METHODS: Wistar rats were allowed free access to cholesterol-rich High Fat Diet (HFD) for 90days to induce dementia. HFD rats were then treated with forskolin (10mg/kg; 20mg/kg) followed by exposure to Morris water maze (MWM) test to deconvolute the mechanistic of learning and memory. An array of biochemical and histopathological tests were performed to demonstrate the extent of damage induced by HFD. RESULTS: HFD-treated rats exhibited marked accentuation in brain thiobarbituric acid reactive species, Interleukin-1ß, tumor necrosis factor-α levels, myeloperoxidase and acetylcholinestrase activity in addition to attenuation of glutathione levels and superoxide dismutase activity as compared to rats fed on normal chow diet. Consistent rise in serum cholesterol level was also indicated. Histopathological examination of cerebral cortex using hematoxylin and eosin and congo red staining methods demonstrated significant neutrophilic incursion and amyloid deposition. Administration of forskolin to HFD treated rats improved memory functions, biochemical and histopathological alterations. Concomitant administration of ketoconazole, a PXR antagonist with forskolin prevented the observed protective effects. CONCLUSION: Our findings signify that forskolin defends HFD induced cognitive deficits. Current plethora of results also defines the potential of PXR in neuroprotective action of forskolin in dementia.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Colesterol na Dieta , Colforsina/farmacologia , Demência/tratamento farmacológico , Dieta Hiperlipídica , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de Esteroides/agonistas , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Cognição/efeitos dos fármacos , Citocinas/metabolismo , Demência/etiologia , Demência/metabolismo , Demência/psicologia , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/metabolismo , Glutationa/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Receptor de Pregnano X , Ratos Wistar , Receptores de Esteroides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
17.
Naunyn Schmiedebergs Arch Pharmacol ; 389(1): 73-85, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26475618

RESUMO

Proton pump inhibitors (PPIs) have exhibited glucose lowering action in animal models of diabetes; however, their potential in diabetes-related complications has not yet been evaluated. Hence, the present study has been undertaken to investigate the renoprotective potential of lansoprazole in streptozotocin-induced diabetic nephropathy in wistar rats. Diabetic nephropathy was induced with a single injection of streptozotocin (STZ, 45 mg/kg, i.p.). Lansoprazole (40 mg/kg; 80 mg/kg, p.o.; 4 weeks) was administered to diabetic rats after 4 weeks of STZ treatment. A battery of biochemical tests such as serum glucose, glycated hemoglobin, blood urea nitrogen (BUN), serum creatinine, albumin, and kidney weight/body weight (%) ratio were performed to evaluate the renal functions. Oxidative stress was determined by estimating renal thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH) levels. Lipid profile was assessed by determining serum cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL). The STZ-treated rats demonstrated deleterious alterations in kidney functions, enhanced oxidative stress, and disturbed lipid profile. Administration of lansoprazole to diabetic rats significantly reduced serum glucose, glycated hemoglobin, BUN, creatinine, albumin levels, and oxidative stress. Serum lipids like TC and TG were decreased, and HDL was enhanced in lansoprazole-treated STZ rats. The findings of our study indicate that renoprotective effects of lansoprazole may be attributed to its glucose-lowering, lipid-lowering, and antioxidative potential.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Lansoprazol/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Glicemia/análise , Nitrogênio da Ureia Sanguínea , Encéfalo/metabolismo , Colesterol/sangue , Creatinina/sangue , Diabetes Mellitus Experimental/sangue , Nefropatias Diabéticas/sangue , Feminino , Glutationa/metabolismo , Hemoglobinas Glicadas/análise , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Lansoprazol/farmacologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Ratos Wistar , Albumina Sérica/análise , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Triglicerídeos/sangue
18.
Colloids Surf B Biointerfaces ; 144: 161-169, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27085048

RESUMO

BACKGROUND AND OBJECTIVE: Metformin hydrochloride (MTF-HCl) is extensively recommended by physicians for the treatment of polycystic ovary syndrome (PCOS). Mechanistically, MTF-HCl activates AMP-dependent kinase-α (AMPK-α) pathway to decrease the glucose production, enhances fatty acid oxidation and elevates the uptake of glucose in tissues. However, despite favourable physicochemical properties, oral administration of MTF-HCl is associated with impaired bioavailability (50-60%), lactic-acidosis and frequent dosing (500mg 2-3 times a day) in PCOS that ultimately influence the patient compliance. Therefore, in present investigation, MTF-HCl loaded unmodified and cationic small unilamellar niosomes were separately amalgamated with thermosensitive gel (MTF-HCl-SUNs-Gel and MTF-HCl-C-SUNs-Gel) for the treatment of PCOS through vaginal route of administration. METHODS AND RESULTS: MTF-HCl-SUNs and MTF-HCl-C-SUNs were separately prepared by reverse phase evaporation method. The nanovesicle size and zeta-potential of MTF-HCl-C-SUNs were measured to be 210.3±14.8-nm (P<0.05) and +8.7±2.7-mV (P<0.001), significantly higher than 198.5±20.3-nm and -16.6±3.9-mV of MTF-HCl-SUNs, respectively. Moreover, promising results of in vitro characterization parameters like gelation time, gelling temperature, viscosity analysis, percent mucoadhesiveness and drug release of MTF-HCl-C-SUNs-Gel and MTF-HCl-SUNs-Gel ensured the candidature of tailored gels for further in vivo investigations. In this way, treatment of PCOS rats under scheduled dose-dosage regimen with oral MTF-HCl solution, intravaginal MTF-HCl-SUNs-Gel and intravaginal MTF-HCl-C-SUNs-gel exhibited remarkable alterations, recruitment and development of normal follicles in addition to normalization of level of various hormones in PCOS. CONCLUSION: In conclusion, MTF-C-SUNs-Gel has paved the way for developing intravaginal dosage form of MTF-HCl for the treatment of PCOS.


Assuntos
Géis/química , Metformina/administração & dosagem , Metformina/uso terapêutico , Síndrome do Ovário Policístico/tratamento farmacológico , Temperatura , Adesividade , Administração Intravaginal , Animais , Cátions , Quitosana/química , Liberação Controlada de Fármacos , Feminino , Glicerofosfatos/química , Hormônios/sangue , Lipossomos , Metformina/farmacologia , Muco/efeitos dos fármacos , Tamanho da Partícula , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/patologia , Ratos Wistar , Eletricidade Estática , Sus scrofa , Viscosidade
19.
Colloids Surf B Biointerfaces ; 132: 225-35, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26047885

RESUMO

Reduced brominated derivative of noscapine (Red-Br-Nos, EM012), has potent anti-inflammatory property. However, physicochemical limitations of Red-Br-Nos like low aqueous solubility (0.43×10(-3) g/mL), high lipophilicity (logP∼2.94) and ionization at acidic pH greatly encumber the scale-up of oral drug delivery systems for the management of colitis. Therefore, in present investigation, chitosan microspheres bearing Red-Br-Nos (CTS-MS-Red-Br-Nos) were prepared by emulsion polymerization method and later coated with wheat germ agglutinin (WGA-CTS-MS-Red-Br-Nos) to boost the bioadhesive property. The mean particle size and zeta-potential of CTS-MS-Red-Br-Nos were measured to be 10.5±5.4 µm and 8.1±2.2 mV, significantly (P<0.05) lesser than, 30.2±3.2 µm and 19.2±2.3 mV of WGA-CTS-MS-Red-Br-Nos. Furthermore, various spectral techniques like SEM, FT-IR, DSC and PXRD substantiated that Red-Br-Nos was molecularly dispersed in tailored microspheres in amorphous state. Surface bioadhesive property of WGA-CTS-MS-Red-Br-Nos promoted the affinity toward colon mucin cells in simulated colonic fluid (SCF, pH∼7.2). In vitro release studies carried out on WGA-CTS-MS-Red-Br-Nos and CTS-MS-Red-Br-Nos indicated that SCF with colitis milieu (pH∼4.7) favored the controlled release of Red-Br-Nos, owing to solubilization at acidic pH. Consistently, in vivo investigation also demonstrated the utility of WGA-CTS-MS-Red-Br-Nos, which remarkably attenuated the DSS encouraged neutrophil infiltration, myeloperoxidase activity, and pro-inflammatory cytokine production in C57BL6J mice, as compared to CTS-MS-Red-Br-Nos and Red-Br-Nos suspension. The noteworthy anti-inflammatory activity of WGA-CTS-MS-Red-Br-Nos against acute colitis may be attributed to enhanced drug delivery, affinity and utmost drug exposure at inflamed mucosal layers of colon. In conclusion, WGA-CTS-MS-Red-Br-Nos warrants further in-depth in vitro and in vivo investigations to scale-up the technology for clinical translation.


Assuntos
Bromo/química , Quitosana/química , Colite/tratamento farmacológico , Microesferas , Noscapina/uso terapêutico , Aglutininas do Germe de Trigo/química , Animais , Varredura Diferencial de Calorimetria , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Noscapina/química , Difração de Pó
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA