Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 17(11): e3000533, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710600

RESUMO

The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth's most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host-microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies.


Assuntos
Organismos Aquáticos/microbiologia , Microbiota/fisiologia , Simbiose/fisiologia , Animais , Bactérias/classificação , Ecossistema , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos
2.
Nat Microbiol ; 5(3): 498-510, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015496

RESUMO

Spatial metabolomics describes the location and chemistry of small molecules involved in metabolic phenotypes, defence molecules and chemical interactions in natural communities. Most current techniques are unable to spatially link the genotype and metabolic phenotype of microorganisms in situ at a scale relevant to microbial interactions. Here, we present a spatial metabolomics pipeline (metaFISH) that combines fluorescence in situ hybridization (FISH) microscopy and high-resolution atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry to image host-microbe symbioses and their metabolic interactions. The metaFISH pipeline aligns and integrates metabolite and fluorescent images at the micrometre scale to provide a spatial assignment of host and symbiont metabolites on the same tissue section. To illustrate the advantages of metaFISH, we mapped the spatial metabolome of a deep-sea mussel and its intracellular symbiotic bacteria at the scale of individual epithelial host cells. Our analytical pipeline revealed metabolic adaptations of the epithelial cells to the intracellular symbionts and variation in metabolic phenotypes within a single symbiont 16S rRNA phylotype, and enabled the discovery of specialized metabolites from the host-microbe interface. metaFISH provides a culture-independent approach to link metabolic phenotypes to community members in situ and is a powerful tool for microbiologists across fields.


Assuntos
Bivalves/microbiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Metabolômica/métodos , Microbiota/fisiologia , Animais , Bactérias/genética , Bactérias/metabolismo , Hibridização in Situ Fluorescente , Metaboloma , Microbiota/genética , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Simbiose , Espectrometria de Massas em Tandem
3.
mSystems ; 4(6)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822601

RESUMO

Microbial communities exchange molecules with their environment, which plays a major role in regulating global biogeochemical cycles and climate. While extracellular metabolites are commonly measured in terrestrial and limnic ecosystems, the presence of salt in marine habitats limits the nontargeted analyses of the ocean exometabolome using mass spectrometry (MS). Current methods require salt removal prior to sample measurements, which can alter the molecular composition of the metabolome and limit the types of compounds detected by MS. To overcome these limitations, we developed a gas chromatography MS (GC-MS) method that avoids sample altering during salt removal and that detects metabolites down to nanomolar concentrations from less than 1 ml of seawater. We applied our method (SeaMet) to explore marine metabolomes in vitro and in vivo First, we measured the production and consumption of metabolites during the culture of a heterotrophic bacterium, Marinobacter adhaerens Our approach revealed successional uptake of amino acids, while sugars were not consumed. These results show that exocellular metabolomics provides insights into nutrient uptake and energy conservation in marine microorganisms. We also applied SeaMet to explore the in situ metabolome of coral reef and mangrove sediment porewaters. Despite the fact that these ecosystems occur in nutrient-poor waters, we uncovered high concentrations of sugars and fatty acids, compounds predicted to play a key role for the abundant and diverse microbial communities in coral reef and mangrove sediments. Our data demonstrate that SeaMet advances marine metabolomics by enabling a nontargeted and quantitative analysis of marine metabolites, thus providing new insights into nutrient cycles in the oceans.IMPORTANCE Nontargeted approaches using metabolomics to analyze metabolites that occur in the oceans is less developed than those for terrestrial and limnic ecosystems. One of the challenges in marine metabolomics is that salt limits metabolite analysis in seawater to methods requiring salt removal. Building on previous sample preparation methods for metabolomics, we developed SeaMet, which overcomes the limitations of salt on metabolite detection. Considering that the oceans contain the largest dissolved organic matter pool on Earth, describing the marine metabolome using nontargeted approaches is critical for understanding the drivers behind element cycles, biotic interactions, ecosystem function, and atmospheric CO2 storage. Our method complements both targeted marine metabolomic investigations as well as other "omics" (e.g., genomics, transcriptomics, and proteomics) approaches by providing an avenue for studying the chemical interaction between marine microbes and their habitats.

4.
Environ Microbiol Rep ; 9(3): 310-315, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28464532

RESUMO

Microbial symbiotic partners, such as those associated with Scleractinian corals, mediate biochemical transformations that influence host performance and survival. While evidence suggests microbial community composition partly accounts for differences in coral physiology, how these symbionts affect metabolic pathways remains underexplored. We aimed to assess functional implications of variation among coral-associated microbial partners in hospite. To this end, we characterized and compared metabolomic profiles and microbial community composition from nine reef-building coral species. These data demonstrate metabolite profiles and microbial communities are species-specific and are correlated to one another. Using Porites spp. as a case study, we present evidence that the relative abundance of different sub-clades of Symbiodinium and bacterial/archaeal families are linked to positive and negative metabolomic signatures. Our data suggest that while some microbial partners benefit the union, others are more opportunistic with potential detriment to the host. Consequently, coral partner choice likely influences cellular metabolic activities and, therefore, holobiont nutrition.


Assuntos
Alveolados/crescimento & desenvolvimento , Antozoários/microbiologia , Antozoários/parasitologia , Archaea/crescimento & desenvolvimento , Gammaproteobacteria/crescimento & desenvolvimento , Simbiose/fisiologia , Vibrionaceae/crescimento & desenvolvimento , Alveolados/metabolismo , Animais , Archaea/classificação , Archaea/metabolismo , Biodiversidade , Recifes de Corais , Gammaproteobacteria/metabolismo , Metaboloma/fisiologia , Vibrionaceae/metabolismo
5.
PLoS One ; 9(10): e111274, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25354140

RESUMO

In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change.


Assuntos
Antozoários/metabolismo , Recifes de Corais , Metaboloma , Animais , Biodiversidade , Espectroscopia de Prótons por Ressonância Magnética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA