Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 135(26): 2337-2353, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32157296

RESUMO

Targeted therapies against the BCR-ABL1 kinase have revolutionized treatment of chronic phase (CP) chronic myeloid leukemia (CML). In contrast, management of blast crisis (BC) CML remains challenging because BC cells acquire complex molecular alterations that confer stemness features to progenitor populations and resistance to BCR-ABL1 tyrosine kinase inhibitors. Comprehensive models of BC transformation have proved elusive because of the rarity and genetic heterogeneity of BC, but are important for developing biomarkers predicting BC progression and effective therapies. To better understand BC, we performed an integrated multiomics analysis of 74 CP and BC samples using whole-genome and exome sequencing, transcriptome and methylome profiling, and chromatin immunoprecipitation followed by high-throughput sequencing. Employing pathway-based analysis, we found the BC genome was significantly enriched for mutations affecting components of the polycomb repressive complex (PRC) pathway. While transcriptomically, BC progenitors were enriched and depleted for PRC1- and PRC2-related gene sets respectively. By integrating our data sets, we determined that BC progenitors undergo PRC-driven epigenetic reprogramming toward a convergent transcriptomic state. Specifically, PRC2 directs BC DNA hypermethylation, which in turn silences key genes involved in myeloid differentiation and tumor suppressor function via so-called epigenetic switching, whereas PRC1 represses an overlapping and distinct set of genes, including novel BC tumor suppressors. On the basis of these observations, we developed an integrated model of BC that facilitated the identification of combinatorial therapies capable of reversing BC reprogramming (decitabine+PRC1 inhibitors), novel PRC-silenced tumor suppressor genes (NR4A2), and gene expression signatures predictive of disease progression and drug resistance in CP.


Assuntos
Crise Blástica/genética , Regulação Leucêmica da Expressão Gênica/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Complexo Repressor Polycomb 1/fisiologia , Complexo Repressor Polycomb 2/fisiologia , Diferenciação Celular , Imunoprecipitação da Cromatina , Metilação de DNA , Conjuntos de Dados como Assunto , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Dosagem de Genes , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , Transcriptoma , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
2.
Clin Chem Lab Med ; 60(2): 152-161, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34773729

RESUMO

OBJECTIVES: Lipemia is the presence of abnormally high lipoprotein concentrations in serum or plasma samples that can interfere with laboratory testing. There is little guidance available from manufacturers or professional bodies on processing lipemic samples to produce clinically acceptable results. This systematic review summarizes existing literature on the effectiveness of lipid removal techniques in reducing interference in clinical chemistry tests. METHODS: A PubMed search using terms relating to lipid removal from human samples for clinical chemistry tests produced 1,558 studies published between January 2010 and July 2021. 15 articles met the criteria for further analyses. RESULTS: A total of 66 analytes were investigated amongst the 15 studies, which showed highly heterogenous study designs. High-speed centrifugation was consistently effective for 13 analytes: albumin, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin, creatine kinase (CK), creatinine (Jaffe method), gamma-glutamyl transferase (GGT), glucose (hexokinase-based method), lactate dehydrogenase (LDH), phosphate, potassium, and urea. Lipid-clearing agents were uniformly effective for seven analytes: ALT, AST, total bilirubin, CK, creatinine (Jaffe method), lipase, and urea. Mixed results were reported for the remaining analytes. CONCLUSIONS: For some analytes, high-speed centrifugation and/or lipid-clearing agents can be used in place of ultracentrifugation. Harmonized protocols and acceptability criteria are required to allow pooled data analysis and interpretation of different lipemic interference studies.


Assuntos
Química Clínica , Hiperlipidemias , Alanina Transaminase , Centrifugação , Química Clínica/métodos , Humanos , Ultracentrifugação
4.
Oncotarget ; 8(25): 41474-41486, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28467813

RESUMO

BACKGROUND: A germline deletion in the BIM (BCL2L11) gene has been shown to impair the apoptotic response to tyrosine kinase inhibitors (TKIs) in vitro but its association with poor outcomes in TKI-treated non-small cell lung cancer (NSCLC) patients remains unclear. We conducted a systematic review and meta-analysis on both aggregate and individual patient data to address this issue. RESULTS: In an aggregate data meta-analysis (n = 1429), the BIM deletion was associated with inferior PFS (HR = 1.51, 95%CI = 1.06-2.13, P = 0.02). Using individual patient data (n = 1200), we found a significant interaction between the deletion and ethnicity. Amongst non-Koreans, the deletion was an independent predictor of shorter PFS (Chinese: HR = 1.607, 95%CI = 1.251-2.065, P = 0.0002; Japanese: HR = 2.636, 95%CI = 1.603-4.335, P = 0.0001), and OS (HR = 1.457, 95% CI = 1.063-1.997, P = 0.019). In Kaplan-Meier analyses, the BIM deletion was associated with shorter survival in non-Koreans (PFS: 8.0 months v 11.1 months, P < 0.0005; OS: 25.7 v 30.0 months, P = 0.042). In Koreans, the BIM deletion was not predictive of PFS or OS. MATERIALS AND METHODS: 10 published and 3 unpublished studies that reported survival outcomes in NSCLC patients stratified according to BIM deletion were identified from PubMed and Embase. Summary risk estimates were calculated from aggregate patient data using a random-effects model. For individual patient data, Kaplan-Meier analyses were supported by multivariate Cox regression to estimate hazard ratios (HRs) for PFS and OS. CONCLUSIONS: In selected populations, the BIM deletion is a significant predictor of shorter PFS and OS on EGFR-TKIs. Further studies to determine its effect on response to other BIM-dependent therapeutic agents are needed, so that alternative treatment strategies may be devised.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Intervalo Livre de Doença , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Mutação , Polimorfismo Genético , Resultado do Tratamento
5.
PLoS One ; 9(8): e103435, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25090024

RESUMO

A broad range of anti-cancer agents, including glucocorticoids (GCs) and tyrosine kinase inhibitors (TKIs), kill cells by upregulating the pro-apoptotic BCL2 family member, BIM. A common germline deletion in the BIM gene was recently shown to favor the production of non-apoptotic BIM isoforms, and to predict inferior responses in TKI-treated chronic myeloid leukemia (CML) and EGFR-driven lung cancer patients. Given that both in vitro and in vivo GC resistance are predictive of adverse outcomes in acute lymphoblastic leukemia (ALL), we hypothesized that this polymorphism would mediate GC resistance, and serve as a biomarker of poor response in ALL. Accordingly, we used zinc finger nucleases to generate ALL cell lines with the BIM deletion, and confirmed the ability of the deletion to mediate GC resistance in vitro. In contrast to CML and lung cancer, the BIM deletion did not predict for poorer clinical outcome in a retrospective analysis of 411 pediatric ALL patients who were uniformly treated with GCs and chemotherapy. Underlying the lack of prognostic significance, we found that the chemotherapy agents used in our cohort (vincristine, L-asparaginase, and methotrexate) were each able to induce ALL cell death in a BIM-independent fashion, and resensitize BIM deletion-containing cells to GCs. Together, our work demonstrates how effective therapy can overcome intrinsic resistance in ALL patients, and suggests the potential of using combinations of drugs that work via divergent mechanisms of cell killing to surmount BIM deletion-mediated drug resistance in other cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas de Membrana/genética , Erros Inatos do Metabolismo/tratamento farmacológico , Erros Inatos do Metabolismo/genética , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas/genética , Receptores de Glucocorticoides/deficiência , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular Tumoral , Criança , Pré-Escolar , Dexametasona/farmacologia , Feminino , Deleção de Genes , Humanos , Lactente , Masculino , Receptores de Glucocorticoides/genética , Estudos Retrospectivos
6.
Nat Med ; 18(4): 521-8, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426421

RESUMO

Tyrosine kinase inhibitors (TKIs) elicit high response rates among individuals with kinase-driven malignancies, including chronic myeloid leukemia (CML) and epidermal growth factor receptor-mutated non-small-cell lung cancer (EGFR NSCLC). However, the extent and duration of these responses are heterogeneous, suggesting the existence of genetic modifiers affecting an individual's response to TKIs. Using paired-end DNA sequencing, we discovered a common intronic deletion polymorphism in the gene encoding BCL2-like 11 (BIM). BIM is a pro-apoptotic member of the B-cell CLL/lymphoma 2 (BCL2) family of proteins, and its upregulation is required for TKIs to induce apoptosis in kinase-driven cancers. The polymorphism switched BIM splicing from exon 4 to exon 3, which resulted in expression of BIM isoforms lacking the pro-apoptotic BCL2-homology domain 3 (BH3). The polymorphism was sufficient to confer intrinsic TKI resistance in CML and EGFR NSCLC cell lines, but this resistance could be overcome with BH3-mimetic drugs. Notably, individuals with CML and EGFR NSCLC harboring the polymorphism experienced significantly inferior responses to TKIs than did individuals without the polymorphism (P = 0.02 for CML and P = 0.027 for EGFR NSCLC). Our results offer an explanation for the heterogeneity of TKI responses across individuals and suggest the possibility of personalizing therapy with BH3 mimetics to overcome BIM-polymorphism-associated TKI resistance.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Polimorfismo Genético/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Deleção de Sequência/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Anexinas/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína 11 Semelhante a Bcl-2 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Estudos de Coortes , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Ensaio de Imunoadsorção Enzimática/métodos , Receptores ErbB/genética , Éxons/genética , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Frequência do Gene , Genótipo , Humanos , Cooperação Internacional , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Estatísticas não Paramétricas , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA