Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2314588121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502691

RESUMO

During development, motor axons are guided toward muscle target by various extrinsic cues including extracellular matrix (ECM) proteins whose identities and cellular source remain poorly characterized. Here, using single-cell RNAseq of sorted GFP+ cells from smyhc1:gfp-injected zebrafish embryos, we unravel the slow muscle progenitors (SMP) pseudotemporal trajectory at the single-cell level and show that differentiating SMPs are a major source of ECM proteins. The SMP core-matrisome was characterized and computationally predicted to form a basement membrane-like structure tailored for motor axon guidance, including basement membrane-associated ECM proteins, as collagen XV-B, one of the earliest core-matrisome gene transcribed in differentiating SMPs and the glycoprotein Tenascin C. To investigate how contact-mediated guidance cues are organized along the motor path to exert their function in vivo, we used microscopy-based methods to analyze and quantify motor axon navigation in tnc and col15a1b knock-out fish. We show that motor axon shape and growth rely on the timely expression of the attractive cue Collagen XV-B that locally provides axons with a permissive soft microenvironment and separately organizes the repulsive cue Tenascin C into a unique functional dual topology. Importantly, bioprinted micropatterns that mimic this in vivo ECM topology were sufficient to drive directional motor axon growth. Our study offers evidence that not only the composition of ECM cues but their topology critically influences motor axon navigation in vertebrates with potential applications in regenerative medicine for peripheral nerve injury as regenerating nerves follow their original path.


Assuntos
Tenascina , Peixe-Zebra , Animais , Tenascina/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Axônios/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(45): e2305959120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903280

RESUMO

TRAAK channels are mechano-gated two-pore-domain K+ channels. Up to now, activity of these channels has been reported in neurons but not in skeletal muscle, yet an archetype of tissue challenged by mechanical stress. Using patch clamp methods on isolated skeletal muscle fibers from adult zebrafish, we show here that single channels sharing properties of TRAAK channels, i.e., selective to K+ ions, of 56 pS unitary conductance in the presence of 5 mM external K+, activated by membrane stretch, heat, arachidonic acid, and internal alkaline pH, are present in enzymatically isolated fast skeletal muscle fibers from adult zebrafish. The kcnk4b transcript encoding for TRAAK channels was cloned and found, concomitantly with activity of mechano-gated K+ channels, to be absent in zebrafish fast skeletal muscles at the larval stage but arising around 1 mo of age. The transfer of the kcnk4b gene in HEK cells and in the adult mouse muscle, that do not express functional TRAAK channels, led to expression and activity of mechano-gated K+ channels displaying properties comparable to native zebrafish TRAAK channels. In whole-cell voltage-clamp and current-clamp conditions, membrane stretch and heat led to activation of macroscopic K+ currents and to acceleration of the repolarization phase of action potentials respectively, suggesting that heat production and membrane deformation associated with skeletal muscle activity can control muscle excitability through TRAAK channel activation. TRAAK channels may represent a teleost-specific evolutionary product contributing to improve swimming performance for escaping predators and capturing prey at a critical stage of development.


Assuntos
Temperatura Alta , Peixe-Zebra , Animais , Camundongos , Chlorocebus aethiops , Peixe-Zebra/genética , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético , Células COS
3.
Stem Cells ; 35(6): 1505-1518, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28181357

RESUMO

In mammals, neuroepithelial cells play an essential role in embryonic neurogenesis, whereas glial stem cells are the principal source of neurons at postembryonic stages. By contrast, neuroepithelial-like stem/progenitor (NE) cells have been shown to be present throughout life in teleosts. We used three-dimensional (3D) reconstructions of cleared transgenic wdr12:GFP medaka brains to demonstrate that this cell type is widespread in juvenile and to identify new regions containing NE cells. We established the gene expression profile of optic tectum (OT) NE cells by cell sorting followed by RNA-seq. Our results demonstrate that most OT NE cells are indeed active stem cells and that some of them exhibit long G2 phases. We identified several novel pathways (e.g., DNA repair pathways) potentially involved in NE cell homeostasis. In situ hybridization studies showed that all NE populations in the postembryonic medaka brain have a similar molecular signature. Our findings highlight the importance of NE progenitors in medaka and improve our understanding of NE-cell biology. These cells are potentially useful not only for neural stem cell studies but also for improving the characterization of neurodevelopmental diseases, such as microcephaly. Stem Cells 2017;35:1505-1518.


Assuntos
Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células Neuroepiteliais/metabolismo , Oryzias/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Proliferação de Células/genética , Reparo do DNA/genética , Fase G2 , Proteínas de Fluorescência Verde/metabolismo , Oryzias/genética , Análise de Sequência de RNA , Colículos Superiores/citologia , Regulação para Cima
4.
Gen Comp Endocrinol ; 261: 179-189, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28648994

RESUMO

In zebrafish, there exists a clear need for new tools to study sex differentiation dynamic and its perturbation by endocrine disrupting chemicals. In this context, we developed and characterized a novel transgenic zebrafish line expressing green fluorescent protein (GFP) under the control of the zebrafish cyp19a1a (gonadal aromatase) promoter. In most gonochoristic fish species including zebrafish, cyp19a1a, the enzyme responsible for the synthesis of estrogens, has been shown to play a critical role in the processes of reproduction and sexual differentiation. This novel cyp19a1a-eGFP transgenic line allowed a deeper characterization of expression and localization of cyp19a1a gene in zebrafish gonads both at the adult stage and during development. At the adult stage, GFP expression was higher in ovaries than in testis. We showed a perfect co-expression of GFP and endogenous Cyp19a1a protein in gonads that was mainly localized in the cytoplasm of peri-follicular cells in the ovary and of Leydig and germ cells in the testis. During development, GFP was expressed in all immature gonads of 20 dpf-old zebrafish. Then, GFP expression increased in early differentiated female at 30 and 35dpf to reach a high GFP intensity in well-differentiated ovaries at 40dpf. On the contrary, males consistently displayed low GFP expression as compared to female whatever their stage of development, resulting in a clear dimorphic expression between both sexes. Interestingly, fish that undergoes ovary-to-testis transition (35 and 40dpf) presented GFP levels similar to males or intermediate between females and males. In this transgenic line our results confirm that cyp19a1a is expressed early during development, before the histological differentiation of the gonads, and that the down-regulation of cyp19a1a expression is likely responsible for the testicular differentiation. Moreover, we show that although cyp19a1a expression exhibits a clear dimorphic expression pattern in gonads during sexual differentiation, its expression persists whatever the sex suggesting that estradiol synthesis is important for gonadal development of both sexes. Monitoring the expression of GFP in control and exposed-fish will help determine the sensitivity of this transgenic line to EDCs and to refine mechanistic based-assays for the study of EDCs. In fine, this transgenic zebrafish line will be a useful tool to study physiological processes such as reproduction and sexual differentiation, and their perturbations by EDCs.


Assuntos
Aromatase/genética , Gônadas/metabolismo , Diferenciação Sexual/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Aromatase/metabolismo , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Gônadas/fisiologia , Proteínas de Fluorescência Verde/genética , Masculino , Ovário/embriologia , Ovário/metabolismo , Diferenciação Sexual/fisiologia , Testículo/embriologia , Testículo/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Matrix Biol ; 109: 1-18, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278627

RESUMO

The myotendinous junction (MTJ) is essential for the integrity of the musculoskeletal unit. Here, we show that gene ablation of the MTJ marker col22a1 in zebrafish results in MTJ dysfunction but with variable degrees of expression and distinct phenotypic classes. While most individuals reach adulthood with no overt muscle phenotype (class 1), a subset of the progeny displays severe movement impairment and die before metamorphosis (class 2). Yet all mutants display muscle weakness due to ineffective muscle force transmission that is ultimately detrimental for class-specific locomotion-related functions. Movement impairment at the critical stage of swimming postural learning causes class 2 larval death by compromising food intake. In class 1 adults, intensive exercise is required to uncover a decline in muscle performance, accompanied by higher energy demand and mitochondrial adaptation. This study underscores COL22A1 as a candidate gene for myopathies associated with dysfunctional force transmission and anticipates a phenotypically heterogeneous disease.


Assuntos
Tendões , Peixe-Zebra , Animais , Locomoção , Músculo Esquelético , Fenótipo , Postura , Peixe-Zebra/genética
6.
Biol Reprod ; 85(6): 1240-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21816849

RESUMO

The gonadal soma-derived factor (GSDF) is a new member of the transforming growth factor beta (TGF-beta) superfamily that regulates the proliferation of the primordial germ cells (PGC) in developing embryos and spermatogonia in juvenile male trout. The gsdf transcripts are expressed in the somatic cells supporting germ cell development. In zebrafish, we show that GSDF is encoded by a single copy gene that generates polymorphic transcripts and proteins. We determined that gsdf gene expression occurs before gonadal differentiation and is restricted to the gonads. Gene expression is maintained in adult granulosa cells and Sertoli cells but decreases in the cells that are in contact with meiotic and postmeiotic germ cells. Using zebrafish transgenic lines, we demonstrate that the 2-kb proximal promoter region of the gsdf gene targets high levels of transgene expression in the Sertoli and granulosa cells, and is sufficient to mimic the temporal expression pattern of the endogenous gsdf gene from 16 days postfertilization onward. We identified within the first 500 bp evolutionarily conserved DNA motifs that may be involved in Sertoli and granulosa cell-specific expression. However, the 2-kb proximal promoter region failed to drive efficient expression of the transgene in the gonads in four transgenic medaka lines. We propose that the proximal promoter region can be used to target candidate gene deregulation in zebrafish granulosa and Sertoli cells. Furthermore, the green fluorescent protein-expressing zebrafish lines produced in the present study are new valuable models for cell lineage tracing during sex differentiation and gametogenesis.


Assuntos
Células da Granulosa/metabolismo , Células de Sertoli/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sequência Conservada , Feminino , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Dados de Sequência Molecular , Motivos de Nucleotídeos , Oryzias , Regiões Promotoras Genéticas , Diferenciação Sexual , Fator de Crescimento Transformador beta/genética , Transgenes , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
7.
Biol Open ; 10(10)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34590124

RESUMO

The morphogenesis of the vertebrate eye consists of a complex choreography of cell movements, tightly coupled to axial regionalization and cell type specification processes. Disturbances in these events can lead to developmental defects and blindness. Here, we have deciphered the sequence of defective events leading to coloboma in the embryonic eye of the blind cavefish of the species Astyanax mexicanus. Using comparative live imaging on targeted enhancer-trap Zic1:hsp70:GFP reporter lines of both the normal, river-dwelling morph and the cave morph of the species, we identified defects in migratory cell behaviours during evagination that participate in the reduced optic vesicle size in cavefish, without proliferation defect. Further, impaired optic cup invagination shifts the relative position of the lens and contributes to coloboma in cavefish. Based on these results, we propose a developmental scenario to explain the cavefish phenotype and discuss developmental constraints to morphological evolution. The cavefish eye appears as an outstanding natural mutant model to study molecular and cellular processes involved in optic region morphogenesis.


Assuntos
Cegueira/genética , Olho/crescimento & desenvolvimento , Peixes/crescimento & desenvolvimento , Morfogênese/genética , Animais , Evolução Molecular
8.
Lab Anim ; 54(3): 213-224, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31510859

RESUMO

This article provides recommendations for the care of laboratory zebrafish (Danio rerio) as part of the further implementation of Annex A to the European Convention on the protection of vertebrate animals used for experimental and other scientific purposes, EU Commission Recommendation 2007/526/EC and the fulfilment of Article 33 of EU Directive 2010/63, both concerning the housing and care of experimental animals. The recommendations provide guidance on best practices and ranges of husbandry parameters within which zebrafish welfare, as well as reproducibility of experimental procedures, are assured. Husbandry procedures found today in zebrafish facilities are numerous. While the vast majority of these practices are perfectly acceptable in terms of zebrafish physiology and welfare, the reproducibility of experimental results could be improved by further standardisation of husbandry procedures and exchange of husbandry information between laboratories. Standardisation protocols providing ranges of husbandry parameters are likely to be more successful and appropriate than the implementation of a set of fixed guidance values neglecting the empirically successful daily routines of many facilities and will better reflect the wide range of environmental parameters that characterise the natural habitats occupied by zebrafish. A joint working group on zebrafish housing and husbandry recommendations, with members of the European Society for Fish Models in Biology and Medicine (EUFishBioMed) and of the Federation of European Laboratory Animal Science Associations (FELASA) has been given a mandate to provide guidelines based on a FELASA list of parameters, 'Terms of Reference'.


Assuntos
Criação de Animais Domésticos/normas , Animais de Laboratório/fisiologia , Guias como Assunto , Abrigo para Animais/normas , Ciência dos Animais de Laboratório/normas , Peixe-Zebra/fisiologia , Criação de Animais Domésticos/métodos , Bem-Estar do Animal/normas , Animais
9.
J Bone Miner Res ; 35(9): 1782-1797, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32379366

RESUMO

Gain or loss-of-function mutations in fibroblast growth factor receptor 3 (FGFR3) result in cranial vault defects highlighting the protein's role in membranous ossification. Zebrafish express high levels of fgfr3 during skull development; in order to study FGFR3's role in cranial vault development, we generated the first fgfr3 loss-of-function zebrafish (fgfr3lof/lof ). The mutant fish exhibited major changes in the craniofacial skeleton, with a lack of sutures, abnormal frontal and parietal bones, and the presence of ectopic bones. Integrated analyses (in vivo imaging and single-cell RNA sequencing of the osteoblast lineage) of zebrafish fgfr3lof/lof revealed a delay in osteoblast expansion and differentiation, together with changes in the extracellular matrix. These findings demonstrate that fgfr3 is a positive regulator of osteogenesis. We conclude that changes in the extracellular matrix within growing bone might impair cell-cell communication, mineralization, and new osteoblast recruitment. © 2020 American Society for Bone and Mineral Research.


Assuntos
Peixe-Zebra , Animais , Diferenciação Celular , Osteoblastos , Osteogênese , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Crânio , Proteínas de Peixe-Zebra/genética
10.
Sci Adv ; 5(11): eaax3511, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31799391

RESUMO

Plasmacytoid dendritic cells (pDCs) play a crucial role in antiviral innate immunity through their unique capacity to produce large amounts of type I interferons (IFNs) upon viral detection. Tripartite motif (TRIM) proteins have recently come forth as important modulators of innate signaling, but their involvement in pDCs has not been investigated. Here, we performed a rationally streamlined small interfering RNA (siRNA)-based screen of TRIM proteins in human primary pDCs to identify those that are critical for the IFN response. Among candidate hits, TRIM8 emerged as an essential regulator of IFN regulatory factor 7 (IRF7) function. Mechanistically, TRIM8 protects phosphorylated IRF7 (pIRF7) from proteasomal degradation in an E3 ubiquitin ligase-independent manner by preventing its recognition by the peptidyl-prolyl isomerase Pin1. Our findings uncover a previously unknown regulatory mechanism of type I IFN production in pDCs by which TRIM8 and Pin1 oppositely regulate the stability of pIRF7.


Assuntos
Proteínas de Transporte/metabolismo , Vírus Chikungunya/imunologia , Células Dendríticas/imunologia , HIV-1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Interferon Tipo I/imunologia , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Células HEK293 , Humanos , Imunidade Inata/imunologia , Fator Regulador 7 de Interferon/metabolismo , Proteínas do Tecido Nervoso/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Peixe-Zebra
11.
Zebrafish ; 13 Suppl 1: S56-65, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27192449

RESUMO

Health monitoring is a crucial aspect of the management of any research animal house. RESAMA is a network strong of 60 academic and private partners acting in France since the end of 2012. The network aims to increase awareness of animal caretakers and researchers on health management issues in facilities holding aquatic model species (zebrafish, Xenopus, medaka, Mexican tetra). To do so, each partner research facility will be visited at least once. The visiting team is composed at least of one veterinarian and one zootechnician specialized in aquatic species. The visit results in a health-monitoring assessment of the facility, which includes a sampling for histo-pathological, bacteriological, and molecular pathogen detection. During the visit, rearing practices are also reviewed through an interview of animal caretakers. However, the present report essentially focuses on the health-monitoring aspect. The ultimate goal of the project is to provide a network-wide picture of health issues in aquatic facilities. Performed in parallel, the rearing practice assessment will ultimately help to establish rational relationship between handling practices and animal health in aquatic facilities. The study is still in progress. Here, we describe the results to be drawn from an analysis of the 23 facilities that had been visited so far. We sampled 720 fish and 127 amphibians and performed a little less than 1400 individual tests.


Assuntos
Criação de Animais Domésticos/métodos , Aquicultura/métodos , Monitoramento Ambiental/métodos , Modelos Animais , Peixe-Zebra , Bem-Estar do Animal , Animais , França
12.
Cell Rep ; 14(9): 2263-2272, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26923600

RESUMO

Genome editing has now been reported in many systems using TALEN and CRISPR-Cas9 nucleases. Precise mutations can be introduced during homology-directed repair with donor DNA carrying the wanted sequence edit, but efficiency is usually lower than for gene knockout and optimal strategies have not been extensively investigated. Here, we show that using phosphorothioate-modified oligonucleotides strongly enhances genome editing efficiency of single-stranded oligonucleotide donors in cultured cells. In addition, it provides better design flexibility, allowing insertions more than 100 bp long. Despite previous reports of phosphorothioate-modified oligonucleotide toxicity, clones of edited cells are readily isolated and targeted sequence insertions are achieved in rats and mice with very high frequency, allowing for homozygous loxP site insertion at the mouse ROSA locus in particular. Finally, when detected, imprecise knockin events exhibit indels that are asymmetrically positioned, consistent with genome editing taking place by two steps of single-strand annealing.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Marcação de Genes , Humanos , Mutação INDEL , Camundongos , Oligonucleotídeos/genética , Ratos , Peixe-Zebra
13.
Biochim Biophys Acta ; 1625(1): 11-8, 2003 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-12527420

RESUMO

The regulatory sequence including proximal promoter, untranslated exon 1 and intron 1 of the beta-actin gene from tilapia (Oreochromis niloticus) has been isolated and spliced to a beta-galactosidase reporter gene to test its activity. Comparisons of promoter activity have been carried out with three different constructs: (1) 1.6 kb tilapia beta-actin regulatory sequence, (2) 1.5 kb carp beta-actin regulatory sequence, and (3) 4.7 kb carp beta-actin regulatory sequence. Although the 1.6 kb tilapia beta-actin regulatory sequence gave slightly different expression patterns in tilapia embryos assayed by in situ X-gal staining, no difference was observed in expression level when the tilapia sequence was compared with the 4.7 kb carp beta-actin regulatory sequence by quantitative assay. In comparison with the 1.5 kb carp beta-actin regulatory sequence, the 1.6 kb tilapia beta-actin regulatory sequence gave higher expression levels in tilapia embryos, while a reverse result was observed in zebrafish embryos. In cell transfection experiments, the 1.6 kb tilapia beta-actin regulatory sequence showed three to four times better activity in blue gill cells than either the 4.7 kb carp beta-actin or the 1.5 kb carp beta-actin regulatory sequences. The 1.6 kb tilapia beta-actin regulatory sequence also drove higher reporter gene activity in somatic cells of tilapia than did the 4.7 kb carp beta-actin regulatory sequence following direct injection of constructs into muscle. Therefore, taken together, the data demonstrate that the tilapia beta-actin promoter can be used as an efficient regulatory sequence to produce autotransgenic tilapia.


Assuntos
Actinas/genética , Carpas/genética , Regiões Promotoras Genéticas , Tilápia/genética , Animais , Animais Geneticamente Modificados , Carpas/embriologia , Microinjeções , Análise de Sequência de DNA , Tilápia/embriologia , Transgenes
14.
PLoS One ; 10(7): e0133986, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26221953

RESUMO

Presently, human collagen VI-related diseases such as Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) remain incurable, emphasizing the need to unravel their etiology and improve their treatments. In UCMD, symptom onset occurs early, and both diseases aggravate with ageing. In zebrafish fry, morpholinos reproduced early UCMD and BM symptoms but did not allow to study the late phenotype. Here, we produced the first zebrafish line with the human mutation frequently found in collagen VI-related disorders such as UCMD and BM. We used a transcription activator-like effector nuclease (TALEN) to design the col6a1ama605003-line with a mutation within an essential splice donor site, in intron 14 of the col6a1 gene, which provoke an in-frame skipping of exon 14 in the processed mRNA. This mutation at a splice donor site is the first example of a template-independent modification of splicing induced in zebrafish using a targetable nuclease. This technique is readily expandable to other organisms and can be instrumental in other disease studies. Histological and ultrastructural analyzes of homozygous and heterozygous mutant fry and 3 months post-fertilization (mpf) fish revealed co-dominantly inherited abnormal myofibers with disorganized myofibrils, enlarged sarcoplasmic reticulum, altered mitochondria and misaligned sarcomeres. Locomotion analyzes showed hypoxia-response behavior in 9 mpf col6a1 mutant unseen in 3 mpf fish. These symptoms worsened with ageing as described in patients with collagen VI deficiency. Thus, the col6a1ama605003-line is the first adult zebrafish model of collagen VI-related diseases; it will be instrumental both for basic research and drug discovery assays focusing on this type of disorders.


Assuntos
Colágeno Tipo VI , Éxons , Mutação , Sítios de Splice de RNA , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Colágeno Tipo VI/biossíntese , Colágeno Tipo VI/genética , Contratura , Modelos Animais de Doenças , Heterozigoto , Homozigoto , Humanos , Distrofias Musculares/congênito
15.
Gene ; 304: 97-106, 2003 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-12568719

RESUMO

The complete Serine 8-type gonadotropin releasing hormone (GnRH) coding sequence with a substantial 5-prime regulatory sequence (5 kb) has been isolated and characterised in Nile Tilapia (Oreochromis niloticus) from a relevant genomic library. The primary structure of the protein precursor was identified for this gene. The promoter efficacy has been tested using 0.6 kb of the GnRH promoter driving a lacZ reporter gene in both cultured spleen cells and transiently expressing zebrafish. In the cell transfection experiments, the average level of beta-galactosidase activity in transfected cells was more than 2.1 (P<0.05) times higher than the control promoter-less vector in five independent cultures indicating that the 0.6 GnRH/lacZ construct is able to express in spleen cells. In addition, the transient expression of the lacZ gene was detected in the brain of G0 zebrafish embryos (Danio rerio) 4 days after fertilisation following egg injection with the construct, which demonstrated the efficacy of the tilapia GnRH promoter.


Assuntos
Hormônio Liberador de Gonadotropina/genética , Sequências Reguladoras de Ácido Nucleico/genética , Tilápia/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , DNA/química , DNA/genética , DNA/isolamento & purificação , Embrião não Mamífero/metabolismo , Feminino , Expressão Gênica , Masculino , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transfecção , Peixe-Zebra , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
16.
Zebrafish ; 11(4): 291-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25004161

RESUMO

Astyanax mexicanus, a teleost fish comprising both sighted river-dwelling and blind cave-dwelling morphs, is becoming increasingly used in the field of developmental and evolutionary biology. Thus, new experimental and technological tools are needed on this emerging fish model by the expanding scientific community. Here, we describe Astyanax husbandry and egg spawning habits, a prerequisite to the successful establishment of Astyanax transgenic lines. We then compare two different transgenesis methods on both surface and cave Astyanax. Both meganuclease (I-SceI)- and transposase (Tol2)-mediated transgenesis are equivalently efficient, resulting in ∼40% mosaic transgenic fish in F0. Furthermore, the transmission rate was analyzed in F1 in the case of the I-SceI method and was found to be 16%. Finally, the transgene was found stable up the F3 generation, demonstrating the feasibility of generating stable transgenic lines in Astyanax and opening a wide range of possibilities for this fish model.


Assuntos
Criação de Animais Domésticos , Characidae/fisiologia , Endodesoxirribonucleases/genética , Técnicas de Transferência de Genes/instrumentação , Oviposição , Transposases/genética , Animais , Animais Geneticamente Modificados , Characidae/genética , Modelos Animais
17.
Genet. mol. biol ; 25(3): 293-298, Sept. 2002. graf
Artigo em Inglês | LILACS | ID: lil-335769

RESUMO

In this study, we describe the use of a STAT5 responsive element (LHRE) reporter gene to monitor the activity of the growth hormone (GH) transduction pathway following expression of heterologous fish GH and rat STAT5b in tilapia embryos and fish fibroblast cells. Our results indicate that both GH and STAT5b are able to activate the LHRE at high levels when transferred separately, demonstrating the substantial level of conservation of the GH signal transduction pathways between fish and mammals. Unexpectedly, co-expression experiments show a strong inhibition of the GH-dependent activation, suggesting that simultaneous GH and STAT5b overexpression can counteract effects of GH expression in tilapia embryos


Assuntos
Animais , Peixes , Receptores da Somatotropina , Tilápia , Transdução de Sinais , Ciclídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA