Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Plant Cell ; 21(12): 3965-83, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20040542

RESUMO

Translocation of nuclear-encoded preproteins across the inner envelope of chloroplasts is catalyzed by the Tic translocon, consisting of Tic110, Tic40, Tic62, Tic55, Tic32, Tic20, and Tic22. Tic62 was proposed to act as a redox sensor of the complex because of its redox-dependent shuttling between envelope and stroma and its specific interaction with the photosynthetic protein ferredoxin-NADP(H) oxidoreductase (FNR). However, the nature of this close relationship so far remained enigmatic. A putative additional localization of Tic62 at the thylakoids mandated further studies examining how this feature might be involved in the respective redox sensing pathway and the interaction with its partner protein. Therefore, both the association with FNR and the physiological role of the third, thylakoid-bound pool of Tic62 were investigated in detail. Coexpression analysis indicates that Tic62 has similar expression patterns as genes involved in photosynthetic functions and protein turnover. At the thylakoids, Tic62 and FNR form high molecular weight complexes that are not involved in photosynthetic electron transfer but are dynamically regulated by light signals and the stromal pH. Structural analyses reveal that Tic62 binds to FNR in a novel binding mode for flavoproteins, with a major contribution from hydrophobic interactions. Moreover, in absence of Tic62, membrane binding and stability of FNR are drastically reduced. We conclude that Tic62 represents a major FNR interaction partner not only at the envelope and in the stroma, but also at the thylakoids of Arabidopsis thaliana and perhaps all flowering plants. Association with Tic62 stabilizes FNR and is involved in its dynamic and light-dependent membrane tethering.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oxirredutases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Luz , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Mutagênese Insercional , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Oxirredutases/genética , Fotossíntese , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA de Plantas/genética
2.
Protein Expr Purif ; 80(2): 157-68, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21878393

RESUMO

Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on a Ni-NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of α-helices. ¹5N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection.


Assuntos
Sistemas de Transporte de Aminoácidos/química , Proteínas de Membrana/química , Pisum sativum/química , Proteínas de Plantas/química , Dobramento de Proteína , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/isolamento & purificação , Cloroplastos/química , Cloroplastos/genética , Cromatografia de Afinidade , Dicroísmo Circular , Detergentes/química , Escherichia coli/química , Escherichia coli/genética , Genes de Plantas , Corpos de Inclusão/química , Membranas Intracelulares/química , Lipossomos/química , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Micelas , Microdiálise/métodos , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Dodecilsulfato de Sódio/química , Solubilidade , Triptofano/química , Ultrafiltração/métodos
3.
J Exp Med ; 186(2): 209-20, 1997 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-9221750

RESUMO

To generate peptides for presentation by major histocompatibility complex (MHC) class I molecules to T lymphocytes, the immune system of vertebrates has recruited the proteasomes, phylogenetically ancient multicatalytic high molecular weight endoproteases. We have previously shown that many of the proteolytic fragments generated by vertebrate proteasomes have structural features in common with peptides eluted from MHC class I molecules, suggesting that many MHC class I ligands are direct products of proteasomal proteolysis. Here, we report that the processing of polypeptides by proteasomes is conserved in evolution, not only among vertebrate species, but including invertebrate eukaryotes such as insects and yeast. Unexpectedly, we found that several high copy ligands of MHC class I molecules, in particular, self-ligands, are major products in digests of source polypeptides by invertebrate proteasomes. Moreover, many major dual cleavage peptides produced by invertebrate proteasomes have the length and the NH2 and COOH termini preferred by MHC class I. Thus, the ability of proteasomes to generate potentially immunocompetent peptides evolved well before the vertebrate immune system. We demonstrate with polypeptide substrates that interferon gamma induction in vivo or addition of recombinant proteasome activator 28alpha in vitro alters proteasomal proteolysis in such a way that the generation of peptides with the structural features of MHC class I ligands is optimized. However, these changes are quantitative and do not confer qualitatively novel characteristics to proteasomal proteolysis. The data suggest that proteasomes may have influenced the evolution of MHC class I molecules.


Assuntos
Cisteína Endopeptidases/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Complexos Multienzimáticos/fisiologia , Fragmentos de Peptídeos/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Imunocompetência , Interferon gama/biossíntese , Ligantes , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma , Coelhos
4.
Cell Mol Life Sci ; 66(11-12): 1903-23, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19194659

RESUMO

Chloroplast and mitochondria, the two organelles with an accepted endosymbiotic origin, have developed multiple translocation pathways to ensure the subcellular allocation of proteins synthesized by cytosolic ribosomes, and to guarantee their assembly into functional complexes in coordination also with organellar-encoded subunits. The evolution of different protein import machineries was thus essential for the development of these two organelles within cells. A general overview of the translocation machineries in chloroplast and mitochondrial membranes involved in targeting and import of nuclear-encoded proteins, with special focus on plant cells where the two organelles coexist, is expounded.


Assuntos
Cloroplastos/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/fisiologia , Proteínas de Plantas/fisiologia , Plantas/metabolismo , Citosol/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Proteínas Mitocondriais/genética , Filogenia , Proteínas de Plantas/genética , Plantas/ultraestrutura , Transporte Proteico/fisiologia , Ribossomos/metabolismo
5.
J Cell Biol ; 148(6): 1213-21, 2000 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-10725334

RESUMO

A subunit of the preprotein translocon of the outer envelope of chloroplasts (Toc complex) of 64 kD is described, Toc64. Toc64 copurifies on sucrose density gradients with the isolated Toc complex. Furthermore, it can be cross-linked in intact chloroplasts to a high molecular weight complex containing both Toc and Tic subunits and a precursor protein. The 0 A cross-linker CuCl(2) yields the reversible formation of disulfide bridge(s) between Toc64 and the established Toc complex subunits in purified outer envelope membranes. Toc64 contains three tetratricopeptide repeat motifs that are exposed at the chloroplast cytosol interface. We propose that Toc64 functions early in preprotein translocation, maybe as a docking protein for cytosolic cofactors of the protein import into chloroplasts.


Assuntos
Cloroplastos/química , Membranas Intracelulares/química , Proteínas de Membrana/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Sequência de Bases , Cloroplastos/metabolismo , Clonagem Molecular , Cobre , Reagentes de Ligações Cruzadas , Dissulfetos/análise , Membranas Intracelulares/metabolismo , Substâncias Macromoleculares , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Peso Molecular , Pisum sativum , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Triticum/metabolismo
6.
J Cell Biol ; 141(4): 895-904, 1998 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-9585409

RESUMO

The chloroplastic outer envelope protein Toc34 is inserted into the membrane by a COOH-terminal membrane anchor domain in the orientation Ncyto-Cin. The insertion is independent of ATP and a cleavable transit sequence. The cytosolic domain of Toc34 does not influence the insertion process and can be replaced by a different hydrophilic reporter peptide. Inversion of the COOH-terminal, 45-residue segment, including the membrane anchor domain (Toc34Cinv), resulted in an inverted topology of the protein, i.e., Nin-Ccyto. A mutual exchange of the charged amino acid residues NH2- and COOH-proximal of the hydrophobic alpha-helix indicates that a double-positive charge at the cytosolic side of the transmembrane alpha-helix is the sole determinant for its topology. When the inverted COOH-terminal segment was fused to the chloroplastic precursor of the ribulose-1,5-bisphosphate carboxylase small subunit (pS34Cinv), it engaged the transit sequence-dependent import pathway. The inverted peptide domain of Toc34 functions as a stop transfer signal and is released out of the outer envelope protein translocation machinery into the lipid phase. Simultaneously, the NH2-terminal part of the hybrid precursor remained engaged in the inner envelope protein translocon, which could be reversed by the removal of ATP, demonstrating that only an energy-dependent force but no further ionic interactions kept the precursor in the import machinery.


Assuntos
Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas , Estrutura Secundária de Proteína , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cloroplastos/ultraestrutura , Citosol/metabolismo , Membranas Intracelulares/ultraestrutura , Cinética , Proteínas de Membrana/biossíntese , Modelos Biológicos , Dados de Sequência Molecular , Folhas de Planta , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Ribulose-Bifosfato Carboxilase/biossíntese
7.
J Cell Biol ; 137(6): 1279-86, 1997 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-9182662

RESUMO

The chloroplastic inner envelope protein of 110 kD (IEP110) is part of the protein import machinery in the pea. Different hybrid proteins were constructed to assess the import and sorting pathway of IEP110. The IEP110 precursor (pIEP110) uses the general import pathway into chloroplasts, as shown by the mutual exchange of presequences with the precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase (pSSU). Sorting information to the chloroplastic inner envelope is contained in an NH2-proximal part of mature IEP110 (110N). The NH2-terminus serves to anchor the protein into the membrane. Large COOH-terminal portions of this protein (80-90 kD) are exposed to the intermembrane space in situ. Successful sorting and integration of IEP110 and the derived constructs into the inner envelope are demonstrated by the inaccessability of processed mature protein to the protease thermolysin but accessibility to trypsin, i.e., the imported protein is exposed to the intermembrane space. A hybrid protein consisting of the transit sequence of SSU, the NH2-proximal part of mature IEP110, and mature SSU (tpSSU-110N-mSSU) is completely imported into the chloroplast stroma, from which it can be recovered as soluble, terminally processed 110NmSSU. The soluble 110N-mSSU then enters a reexport pathway, which results not only in the insertion of 110N-mSSU into the inner envelope membrane, but also in the extrusion of large portions of the protein into the intermembrane space. We conclude that chloroplasts possess a protein reexport machinery for IEPs in which soluble stromal components interact with a membrane-localized translocation machinery.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Núcleo Celular , Cloroplastos , Proteínas de Membrana/genética , Membrana Nuclear , Organelas/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/genética , Solubilidade
8.
Science ; 266(5193): 1989-92, 1994 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-7801125

RESUMO

The chloroplast outer envelope protein OEP86 functions as a receptor in precursor protein translocation into chloroplasts. Sequence analysis suggests that the precursor of OEP86 is directed to the chloroplast outer envelope by a cleavable, negatively charged, and unusually long amino-terminal peptide. This presequence is unlike other potential targeting signals and suggests the existence of another membrane insertion pathway. Insertion of precursor OEP86 required the hydrolysis of adenosine triphosphate and the existence of surface exposed chloroplast membrane components, and it was not competed by another precursor protein destined for the internal plastid compartments.


Assuntos
Cloroplastos/metabolismo , Proteínas de Ligação ao GTP , Proteínas de Plantas/metabolismo , Precursores de Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Cloroplastos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Peso Molecular , Pisum sativum , Proteínas de Plantas/química , Precursores de Proteínas/química , Processamento de Proteína Pós-Traducional , Ribulose-Bifosfato Carboxilase/metabolismo
9.
Trends Biochem Sci ; 17(12): 498-501, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1471260

RESUMO

A family of proteins known as 14-3-3 is currently receiving increased attention by investigators studying a broad range of biological systems, including plants and invertebrates. The outstanding feature of this family is the extraordinarily high sequence conservation observed. Current thinking indicates that these proteins may function as regulators in signal transduction/phosphorylation mechanisms.


Assuntos
Células Eucarióticas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteína Quinase C/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase , Proteínas 14-3-3 , Sequência de Aminoácidos , Animais , Sequência Conservada , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Fosforilação , Plantas , Transdução de Sinais
10.
Curr Biol ; 8(6): R215-7, 1998 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-9512409

RESUMO

Chloroplast biogenesis requires the translocation of proteins across the outer and inner envelopes. The membrane components of this transport machinery completely differ from those of other organelles, but recently homologues of some of the components have been detected in prokaryotes.


Assuntos
Cloroplastos/fisiologia , Células Eucarióticas/fisiologia , Proteínas de Membrana/fisiologia , Células Procarióticas/fisiologia , Membrana Celular/fisiologia , Cloroplastos/genética , Humanos , Lactente , Proteínas de Membrana/biossíntese , Plantas
11.
Mol Biol Cell ; 12(12): 4090-102, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11739803

RESUMO

OEP7, a 6.7-kDa outer envelope protein of spinach chloroplasts inserts into the outer envelope of the organelle independent of a classical cleavable targeting signal. The insertion of OEP7 was studied to describe the determinants for association with, integration into, and orientation of the protein in the outer envelope of chloroplasts. The insertion of OEP7 into the membrane is independent of outer membrane channel proteins and can be reconstituted with the use of protein-free liposomes. In situ, the binding of OEP7 to the membrane surface is not driven by electrostatic interaction because reduction of phosphatidylglycerol or phosphatidylinositol did not reduce the association with the liposomes. The positively charged amino acids flanking the transmembrane domain at the C terminus are essential to retain the native N(in)-C(out) orientation during insertion into chloroplasts. OEP7 inserts with reversed orientation into liposomes containing the average lipid composition of the outer envelopes. The native like N(in)-C(out) orientation is achieved by reduction of the phoshpatidylglycerol concentration mimicking the composition of the outer leaflet of the outer envelope of chloroplasts. We conclude that the unique lipid composition of the outer leaflet due to lipid asymmetry of the outer envelope is essential for the correct topology of OEP7.


Assuntos
Cloroplastos/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Spinacia oleracea , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Lipossomos/metabolismo , Lipídeos de Membrana/análise , Proteínas de Membrana/genética , Modelos Biológicos , Fosfatidilgliceróis/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Plantas/genética , Conformação Proteica , Spinacia oleracea/genética , Eletricidade Estática , Termodinâmica
12.
Rev Physiol Biochem Pharmacol ; 145: 181-222, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12224527

RESUMO

Chloroplasts are characteristic organelles of plants and algae and the site of oxygenic photosynthesis. They are surrounded by a double membrane and possess an internal membrane system, the thylakoids, on which the photosynthetic machinery is located. They originated more than 1.2 billion years ago from an endosymbiotic event between an already photosynthetic ancestor of present day cyanobacteria and a mitochondriate host cell. During the transformation of the internalized cyanobacterium into a cell organelle most of the genetic information of the endosymbiot got lost or was transferred into the nucleus of the host. Chloroplast proteins encoded by nuclear genes are synthesized on cytoplasmic ribosomes and have to be relocated into the organelle. This is achieved by a proteinaceous import machinery in the outer and inner envelope of the chloroplasts. Proteins destined for the thylakoid membrane and the thylakoid lumen are further translocated by several different pathways into or across this membrane. The subject of this review is the quest of nuclear encoded chloroplast proteins into the organelle and to their final suborganellar location.


Assuntos
Cloroplastos/metabolismo , Cloroplastos/fisiologia , Citosol/metabolismo , Fenômenos Fisiológicos Vegetais , Arabidopsis/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Plastídeos/metabolismo , Simbiose
13.
Biochim Biophys Acta ; 1541(1-2): 64-79, 2001 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-11750663

RESUMO

The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.


Assuntos
Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Precursores de Proteínas/metabolismo , Transporte Proteico , Arabidopsis , Membrana Celular/metabolismo , Citosol/metabolismo , Membranas Intracelulares/metabolismo , Modelos Químicos , Pisum sativum
14.
Biochim Biophys Acta ; 1430(1): 25-38, 1999 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-10082930

RESUMO

A cDNA encoding a plant-type APS reductase was isolated from an axenic cell suspension culture of Catharanthus roseus (Genbank/EMBL-databank accession number U63784). The open reading frame of 1392 bp (termed par) encoded for a protein (Mr=51394) consisting of a N-terminal transit peptide, a PAPS reductase-like core and a C-terminal extension with homology to the thioredoxin-like domain of protein disulfide isomerase. The APS reductase precursor was imported into pea chloroplasts in vitro and processed to give a mature protein of approximately 45 kDa. The homologous protein from pea chloroplast stroma was detected using anti:par polyclonal antibodies. To investigate the catalytical function of the different domains deleted par proteins were purified. ParDelta1 lacking the transit sequence liberated sulfite from APS (Km 2.5+/-0.23 microM) in vitro with glutathione (Km 3+/-0.64 mM) as reductant (Vmax 2.6+/-0.14 U mg-1, molecular activity 126 min-1). ParDelta2 lacking the transit sequence and C-terminal domain had to be reconstituted with exogenous thioredoxin as reductant (Km 15. 3+/-1.27 microM, Vmax 0.6+/-0.014 U mg-1). Glutaredoxin, GSH or DTT were ineffective substitutes. ParDelta1 (35.4%) and parDelta2 (21. 8%) both exhibited insulin reductase activity comparable to thioredoxin (100%). Protein disulfide isomerase activity was observed for parDelta1.


Assuntos
DNA de Cloroplastos/isolamento & purificação , DNA Complementar/isolamento & purificação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Oxirredutases/genética , Sequência de Aminoácidos , Células Cultivadas , DNA de Cloroplastos/metabolismo , DNA Complementar/metabolismo , Cinética , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/metabolismo , Alinhamento de Sequência
15.
J Mol Biol ; 286(1): 105-20, 1999 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-9931253

RESUMO

Growing mitochondria acquire most of their proteins by the uptake of mitochondrial preproteins from the cytosol. To mediate this protein import, both mitochondrial membranes contain independent protein transport systems: the Tom machinery in the outer membrane and the Tim machinery in the inner membrane. Transport of proteins across the inner membrane and sorting to the different inner mitochondrial compartments is mediated by several protein complexes which have been identified in the past years. A complex containing the integral membrane proteins Tim17 and Tim23 constitutes the import channel for preproteins containing amino-terminal hydrophilic presequences. This complex is associated with Tim44 which serves as an adaptor protein for the binding of mtHsp70 to the membrane. mtHsp70, a 70 kDa heat shock protein of the mitochondrial matrix, drives the ATP-dependent import reaction of the processed preprotein after cleavage of the presequence. Preproteins containing internal targeting information are imported by a separate import machinery, which consists of the intermembrane-space proteins Tim9, Tim10, and Tim12, and the inner membrane proteins Tim22 and Tim54. The proteins Tim17, Tim22, and Tim23 have in common a similar topology in the membrane and a homologous amino acid sequence. Moreover, they show a sequence similarity to OEP16, a channel-forming amino acid transporter in the outer envelope of chloroplasts, and to LivH, a component of a prokaryotic amino acid permease, defining a new PRAT-family of preprotein and amino acid transporters.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras , Mitocôndrias/enzimologia , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Membranas Intracelulares/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Plantas , Canais de Translocação SEC , Proteínas SecA , Homologia de Sequência de Aminoácidos
16.
FEBS Lett ; 306(1): 71-4, 1992 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-1628746

RESUMO

We have studied the influence of phospholipase C treatment of intact purified chloroplast on the translocation of a plastid destined precursor protein. Under standard import conditions, i.e. in the light in the presence of 2 mM ATP translocation was completely abolished but binding was observed at slightly elevated levels. An experimental regime which allowed binding but not import of the precursor protein, i.e. in the dark in the presence of 10 microM ATP, demonstrated that translocation intermediates, normally detected at this stage, were missing in phospholipase treated chloroplasts. The precursor was completely sensitive to protease treatment, indicating that the transfer of the precursor from the receptor to the import apparatus was blocked by phospholipase treatment.


Assuntos
Cloroplastos/metabolismo , Precursores de Proteínas/metabolismo , Fosfolipases Tipo C/metabolismo , Bacillus cereus/enzimologia , Transporte Biológico , Fabaceae , Hidrólise , Fosfatidilcolinas/metabolismo , Plantas Medicinais , Termolisina/metabolismo
17.
FEBS Lett ; 367(1): 19-22, 1995 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-7601278

RESUMO

We have used the oxidant CuCl2 to study its effect on precursor protein import into chloroplasts and on the components involved. CuCl2 reversibly oxidizes thiol groups, which in turn, can form disulfide bridges. Concentrations of 40 microM CuCl2 almost completely inhibit precursor protein binding and subsequent translocation into chloroplasts. This inhibitory effect is reversible by a dithiothreitol treatment. Disulfide bridges, which form upon oxidation by CuCl2, are build up intramolecular and intermolecular, if the thiol groups are in close vicinity to each other. CuCl2 can thus be used as a thiol cleavable crosslinker without an additional spacer distance between the two targets. When purified outer envelope membranes were treated with CuCl2, a hetero oligomeric complex is detected, consisting of OEP86, OEP75 and OEP34, indicating the close vicinity and protein-protein interaction between polypeptides in situ, which are involved in protein translocation into chloroplasts.


Assuntos
Cloroplastos/metabolismo , Cobre/farmacologia , Proteínas de Plantas/metabolismo , Transporte Biológico/efeitos dos fármacos , Pisum sativum
18.
FEBS Lett ; 379(3): 302-4, 1996 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-8603711

RESUMO

A soluble protein fraction was obtained from pea chloroplast thylakoids, which represents highly enriched lumenal components. Using antisera against chaperonin 60 (cpn60), chaperonin 10 (cpn10) and the heat shock cognate protein of 70 kDa (hsc70) we are able to demonstrate, that the thylakoid lumen contains a separate set of molecular chaperones, which is distinct from the stromal one. In contrast to the alpha and beta subunits of cpn60 present in the stroma the lumen contains only one cpn60 isoform of distinct isoelectric point. Furthermore the lumenal cpn10 is of 'normal' size and not like its stromal counterpart of a double-domain tandem architecture. The immunoreactive hsc70 isoforms in the lumen seem also to be different from the stromal ones. Thus, chloroplasts seem to contain the largest number of molecular chaperone isoforms present in one organelle.


Assuntos
Cloroplastos/química , Chaperonas Moleculares/isolamento & purificação , Pisum sativum/química , Proteínas de Plantas/isolamento & purificação , Chaperonina 10/isolamento & purificação , Chaperonina 60/isolamento & purificação , Proteínas de Choque Térmico HSP70/isolamento & purificação
19.
FEBS Lett ; 452(1-2): 52-6, 1999 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-10376677

RESUMO

Chloroplasts are believed to have originated from a photosynthetic, prokaryotic ancestor. As the result of endosymbiotic evolution, most of the genes of the endocytobiont were displaced to the host nucleus. Today's chloroplasts must import most of their proteins from the cytosol as precursors. Oligomeric protein complexes in the chloroplast outer and inner envelope membranes are responsible for the specific recognition and membrane translocation of precursor proteins. The translocon at the outer membrane of chloroplasts and the inner membrane of chloroplasts act jointly during the import process. Several translocon subunits have been partially characterized in their molecular structure and function. Initial evidence indicates the prokaryotic origin of some chloroplast translocon components.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Cloroplastos/fisiologia , Glicoproteínas de Membrana/fisiologia , Precursores de Proteínas/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Peptídeos/fisiologia , Transporte Biológico , Proteínas de Ligação ao Cálcio/química , Cloroplastos/química , Glicoproteínas de Membrana/química , Precursores de Proteínas/química , Receptores Citoplasmáticos e Nucleares/química , Receptores de Peptídeos/química
20.
FEBS Lett ; 460(3): 491-4, 1999 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-10556523

RESUMO

The chloroplastic outer envelope protein OEP24 from pea forms a high-conductance low specificity solute channel as shown by in vitro studies. In order to establish its function also in an in vivo-like system, the gene encoding OEP24 was transformed into a yeast strain which lacks the general mitochondria solute channel porin, also known as voltage-dependent anion channel (VDAC). Transformation of the yeast VDAC(-) strain with the OEP24 gene resulted in the recovery of a phenotype indistinguishable from the wild-type. The OEP24 polypeptide is targeted to the mitochondrial outer membrane in this heterologous system. We conclude that OEP24 forms a solute channel in pea chloroplasts in planta.


Assuntos
Cloroplastos/fisiologia , Canais Iônicos/fisiologia , Mitocôndrias/fisiologia , Pisum sativum/fisiologia , Proteínas de Plantas/fisiologia , Porinas/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Membranas Intracelulares/fisiologia , Canais Iônicos/biossíntese , Canais Iônicos/genética , Permeabilidade , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Canais de Ânion Dependentes de Voltagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA