Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RNA ; 16(3): 482-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20106952

RESUMO

The mitochondrial genome of Physarum polycephalum encodes five tRNAs, four of which are edited by nucleotide insertion. Two of these tRNAs, tRNA(met1) and tRNA(met2), contain predicted mismatches at the beginning (proximal end) of the acceptor stem. In addition, the putative 5' end of tRNA(met2) overlaps the 3' end of a small, abundant, noncoding RNA, which we term ppoRNA. These anomalies led us to hypothesize that these two Physarum mitochondrial tRNAs undergo additional editing events. Here, we show that tRNA(met1) and tRNA(met2) each has a nonencoded G at its 5' end. In contrast to the other nucleotides that are added to Physarum mitochondrial RNAs, these extra G residues are likely added post-transcriptionally based on (1) the absence of added G in precursor transcripts containing inserted C and AA residues, (2) the presence of potential intermediates characteristic of 5' replacement editing, and (3) preferential incorporation of GTP into tRNA molecules under conditions that do not support transcription. This is the first report of both post-transcriptional nucleotide insertions and the addition of single Gs in P. polycephalum mitochondrial transcripts. We postulate that tRNA(met1) and tRNA(met2) are acted upon by an activity similar to that present in the mitochondria of certain other amoebozoons and chytrid fungi, suggesting that enzymes that repair the 5' end of tRNAs may be widespread.


Assuntos
Mitocôndrias/metabolismo , Physarum polycephalum/genética , Physarum polycephalum/metabolismo , Edição de RNA , Processamento Pós-Transcricional do RNA , RNA de Transferência de Metionina/metabolismo , RNA/metabolismo , Sequência de Bases , Mitocôndrias/genética , RNA/genética , RNA Mitocondrial , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , RNA de Transferência de Metionina/genética
2.
RNA ; 15(9): 1753-65, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19605532

RESUMO

RNAs in the mitochondria of Physarum polycephalum contain nonencoded nucleotides that are added during RNA synthesis. Essentially all steady-state RNAs are accurately and fully edited, yet the signals guiding these precise nucleotide insertions are presently unknown. To localize the regions of the template that are required for editing, we constructed a series of chimeric templates that substitute varying amounts of DNA either upstream of or downstream from C insertion sites. Remarkably, all sequences necessary for C addition are contained within approximately 9 base pairs on either side of the insertion site. In addition, our data strongly suggest that sequences within this critical region affect different steps in the editing reaction. Template alterations upstream of an editing site influence nucleotide selection and/or insertion, while downstream changes affect editing site recognition and templated extension from the added, unpaired nucleotide. The data presented here provide the first evidence that individual regions of the DNA template play discrete mechanistic roles and represent a crucial initial step toward defining the source of the editing specificity in Physarum mitochondria. In addition, these findings have mechanistic implications regarding the potential involvement of the mitochondrial RNA polymerase in the editing reaction.


Assuntos
Região 3'-Flanqueadora/fisiologia , Região 5'-Flanqueadora/fisiologia , Physarum polycephalum/genética , Edição de RNA/genética , Região 3'-Flanqueadora/genética , Região 5'-Flanqueadora/genética , Animais , Sequência de Bases , Sítios de Ligação/genética , Deleção de Genes , Modelos Biológicos , Fases de Leitura Aberta/genética , Physarum polycephalum/metabolismo , Sequências Reguladoras de Ácido Ribonucleico/fisiologia , Homologia de Sequência do Ácido Nucleico , Moldes Genéticos , Transcrição Gênica/fisiologia
3.
Biochim Biophys Acta ; 1761(1): 64-72, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16495141

RESUMO

We examined the role of the positively charged lysine residues in apoAI by chemical modification. Lysine modification by reductive methylation did not alter apoAI's net charge, secondary or tertiary structure as observed by circular dichroism and trytophan fluorescence, respectively, or have much impact on lipid binding or ABCA1-dependent cholesterol acceptor activity. Acetylation of lysine residues lowered the isoelectric point of apoAI, altered its secondary and tertiary structure, and led to a 40% decrease in cholesterol acceptor activity, while maintaining 93% of its lipid binding activity. Exhaustive lysine acetoacetylation lowered apoAI's isoelectric point, profoundly disrupted its secondary and tertiary structure, and led to 90% and 82% reductions in cholesterol acceptor and lipid binding activities, respectively. The dose-dependent acetoacetylation of an increasing proportion of apoAI lysine residues demonstrated that cholesterol acceptor activity was more sensitive to this modification than lipid binding activity, suggesting that apoAI lysine positive charges play an important role in ABCA1 mediated lipid efflux beyond the role needed to maintain alpha-helical content and lipid binding activity.


Assuntos
Apolipoproteína A-I/sangue , Lisina/metabolismo , Acetilação , Substituição de Aminoácidos , Apolipoproteína A-I/química , Apolipoproteína A-I/isolamento & purificação , Sítios de Ligação , Colesterol/metabolismo , Dicroísmo Circular , Humanos , Lipídeos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
4.
Aging Cell ; 12(6): 1132-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23895727

RESUMO

The processes that control aging remain poorly understood. We have exploited mutants in the nematode, Caenorhabditis elegans, that compromise mitochondrial function and scavenging of reactive oxygen species (ROS) to understand their relation to lifespan. We discovered unanticipated roles and interactions of the mitochondrial superoxide dismutases (mtSODs): SOD-2 and SOD-3. Both SODs localize to mitochondrial supercomplex I:III:IV. Loss of SOD-2 specifically (i) decreases the activities of complexes I and II, complexes III and IV remain normal; (ii) increases the lifespan of animals with a complex I defect, but not the lifespan of animals with a complex II defect, and kills an animal with a complex III defect; (iii) induces a presumed pro-inflammatory response. Knockdown of a molecule that may be a pro-inflammatory mediator very markedly extends lifespan and health of certain mitochondrial mutants. The relationship between the electron transport chain, ROS, and lifespan is complex, and defects in mitochondrial function have specific interactions with ROS scavenging mechanisms. We conclude that mtSODs are embedded within the supercomplex I:III:IV and stabilize or locally protect it from reactive oxygen species (ROS) damage. The results call for a change in the usual paradigm for the interaction of electron transport chain function, ROS release, scavenging, and compensatory responses.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Mitocôndrias/enzimologia , Superóxido Dismutase/metabolismo , Aldeídos/metabolismo , Animais , Antioxidantes/metabolismo , Caenorhabditis elegans/embriologia , Respiração Celular , Transporte de Elétrons , Desenvolvimento Embrionário , Longevidade , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução
5.
Curr Biol ; 21(24): 2070-6, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22137475

RESUMO

Volatile anesthetics (VAs) cause profound neurological effects, including reversible loss of consciousness and immobility. Despite their widespread use, the mechanism of action of VAs remains one of the unsolved puzzles of neuroscience [1, 2]. Genetic studies in Caenorhabditis elegans [3, 4], Drosophila [3, 5], and mice [6-9] indicate that ion channels controlling the neuronal resting membrane potential (RMP) also control anesthetic sensitivity. Leak channels selective for K(+) [10-13] or permeable to Na(+) [14] are critical for establishing RMP. We hypothesized that halothane, a VA, caused immobility by altering the neuronal RMP. In C. elegans, halothane-induced immobility is acutely and completely reversed by channelrhodopsin-2 based depolarization of the RMP when expressed specifically in cholinergic neurons. Furthermore, hyperpolarizing cholinergic neurons via halorhodopsin activation increases sensitivity to halothane. The sensitivity of C. elegans to halothane can be altered by 25-fold by either manipulation of membrane conductance with optogenetic methods or generation of mutations in leak channels that set the RMP. Immobility induced by another VA, isoflurane, is not affected by these treatments, thereby excluding the possibility of nonspecific hyperactivity. The sum of our data indicates that leak channels and the RMP are important determinants of halothane-induced general anesthesia.


Assuntos
Anestésicos Inalatórios/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Neurônios Colinérgicos/fisiologia , Halotano/farmacologia , Isoflurano/farmacologia , Potenciais da Membrana , Animais , Animais Geneticamente Modificados/genética , Comportamento Animal , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos da radiação , Chlamydomonas reinhardtii/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Luz , Fenótipo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Rodopsinas Microbianas/metabolismo , Riluzol/farmacologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA