Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(1): 014704, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610948

RESUMO

State-of-the-art 6D quantum dynamics simulations for the dissociative chemisorption of H2 on a thermally distorted Cu(111) surface, using the static corrugation model, were analyzed to produce several (experimentally available) observables. The expected error, especially important for lower reaction probabilities, was quantified using wavepackets on several different grids as well as two different analysis approaches to obtain more accurate results in the region where a slow reaction channel was experimentally shown to be dominant. The lowest reaction barrier sites for different thermally distorted surface slabs are shown to not just be energetically, but also geometrically, different between surface configurations, which can be used to explain several dynamical effects found when including surface temperature effects. Direct comparison of simulated time-of-flight spectra to those obtained from state-of-the-art desorption experiments showed much improved agreement compared to the perfect lattice BOSS approach. Agreement with experimental rotational and vibrational efficacies also somewhat improved when thermally excited surfaces were included in the theoretical model. Finally, we present clear quantum effects in the rotational quadrupole alignment parameters found for the lower rotationally excited states, which underlines the importance of careful quantum dynamical analyses of this system.

2.
J Chem Phys ; 157(13): 134704, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209022

RESUMO

We present results of our recently expanded static corrugation model (SCM) approach that included the relevant surface temperature effects, applied to the dissociative chemisorption reaction of H2 on a Cu(111) surface. The reaction and rovibrationally elastic scattering probabilities that we obtain at a quantum dynamical (QD) level, as an average of many statically distorted surface configurations, show great agreement with those of a dynamic surface model, which reinforces the validity of the sudden approximation inherent to the SCM. We further investigate several simple methods of binning the final rovibrational state of quasi-classical dynamics simulations, to find those best suited to reproduce the QD results for our system. Finally, we show that the SCM obtained results reproduce experimental dissociation curves very well, when the uncertainty in experimental saturation values is taken into account. Some indication of a slow channel, so far only observed in experiment, can also be found at low incidence energies, although more rigorous QD simulations are required to reduce the noise inherent to our propagation methods.

3.
J Chem Phys ; 156(21): 214706, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676132

RESUMO

Accurately describing surface temperature effects for the dissociative scattering of H2 on a metal surface on a quantum dynamical (QD) level is currently one of the open challenges for theoretical surface scientists. We present the first QD simulations of hydrogen dissociating on a Cu(111) surface, which accurately describe all relevant surface temperature effects, using the static corrugation model. The reaction probabilities we obtain show very good agreement with those found using quasi-classical dynamics (QCD), both for individual surface slabs and for an averaged, thus Monte Carlo sampled, set of thermally distorted surface configurations. Rovibrationally elastic scattering probabilities show a much clearer difference between the QCD and QD results, which appears to be traceable back toward thermally distorted surface configurations with very low dissociation probabilities and underlines the importance of investigating more observables than just dissociation. By reducing the number of distorted surface atoms included in the dynamical model, we also show that only including one surface atom, or even three surface atoms, is generally not enough to accurately describe the effects of the surface temperature on dissociation and elastic scattering. These results are a major step forward in accurately describing hydrogen scattering from a thermally excited Cu(111) surface and open up a pathway to better describe reaction and scattering from other relevant crystal facets, such as stepped surfaces, at moderately elevated surface temperatures where quantum effects are expected to play a more important role in the dissociation of H2 on Cu.

4.
J Chem Phys ; 154(7): 074710, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33607896

RESUMO

The D2 on Cu(111) system has for many years been one of the major benchmark systems for surface scientists. Generating surface configurations using the embedded atom method (EAM), we investigate the quality of the chemically accurate static corrugation model (SCM) for including surface temperature effects, with a focus on the random displacement approach to its distorted surface generation. With this EAM potential, we also treat the Cu(111) surface of our system fully dynamically and shine a further light on not only the quality of the SCM sudden approach but also the limited effect of energy exchange with the surface. Reaction and (in)elastic scattering probability curves, as well as simulated time-of-flight spectra, show good agreement with both earlier works and experimental results, with surface reactions showing a preference for surface atoms displaced away from the incoming molecule. The good agreement with the non-static surface model also further establishes the limited effect of energy exchange on not only the reaction but also on the elastic and inelastic scattering probabilities, even though some molecular translational energy is deposited into the surface.

5.
J Chem Phys ; 149(23): 234702, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30579298

RESUMO

Accurately describing surface temperature effects for the dissociation of H2 on Cu(111) remains challenging. While Ab initio Molecular Dynamics (AIMD), the current state-of-the-art method for modelling such systems, can produce accurate results, it is computationally very expensive to use for extensive testing of, for example, density functionals. A chemically accurate static corrugation model for H2 and D2 on Cu(111) dissociation was made by introducing effective three-body interactions as well as an H2-bond dependence and fitting the model to density functional theory energies for 15 113 different configurations. Reaction probabilities and rovibrational (in)elastic scattering probabilities were computed and compared to experiments and other calculations. Theoretical and experimental results are in good agreement, except for the reaction of (v = 0, J = 0) H2 where both AIMD and the newly developed static corrugation model, both based on the same underlying density functional, predict a similar deviation from the experiment.

6.
Phys Chem Chem Phys ; 19(25): 16317-16322, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28621794

RESUMO

Atomic diffraction by surfaces under fast grazing incidence conditions has been used for almost a decade to characterize surface properties with more accuracy than with more traditional atomic diffraction methods. From six-dimensional solutions of the time-dependent Schrödinger equation, we show that diffraction of H2 molecules under fast grazing incidence conditions could be even more informative for the characterization of ionic surfaces, due to the large anisotropic electrostatic interaction between the quadrupole moment of the molecule and the electric field created by the ionic crystal. Using the LiF(001) surface as a benchmark, we show that fast grazing incidence diffraction of H2 strongly depends on the initial rotational state of the molecule, while rotationally inelastic processes are irrelevant. We demonstrate that, as a result of the anisotropy of the impinging projectile, initial rotational excitation leads to an increase in intensity of high-order diffraction peaks at incidence directions that satisfy precise symmetry constraints, thus providing a more detailed information on the surface characteristics than that obtained from low-order atomic diffraction peaks under fast grazing incidence conditions. As quadrupole-ion surface potentials are expected to accurately represent the interaction between H2 and any surface with a marked ionic character, our analysis should be of general applicability to any of such surfaces. Finally, we show that a density functional theory description of the molecule-ion surface potential catches the main features observed experimentally.

7.
J Chem Phys ; 139(24): 244707, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24387388

RESUMO

Recently, an implementation of the specific reaction parameter (SRP) approach to density functional theory (DFT) was used to study several reactive scattering experiments of H2 on Cu(111). It was possible to obtain chemical accuracy (1 kcal/mol ≈ 4.2 kJ/mol), and therefore, accurately model this paradigmatic example of activated H2 dissociation on a metal surface. In this work, the SRP-DFT methodology is applied to the dissociation of hydrogen on a Pd(111) surface, in order to test whether the SRP-DFT approach is also applicable to non-activated H2-metal systems. In the calculations, the Born-Oppenheimer static surface approximations are used. A comparison to molecular beam sticking experiments, performed at incidence energies ≥125 meV, on H2 + Pd(111) suggested the PBE-vdW [where the Perdew, Burke, and Ernzerhof (PBE) correlation is replaced by van der Waals correlation] functional as a candidate SRP density functional describing the reactive scattering of H2 on Pd(111). Unfortunately, quantum dynamics calculations are not able to reproduce the molecular beam sticking results for incidence energies <125 meV. From a comparison to initial state-resolved (degeneracy averaged) sticking probabilities it seems clear that for H2 + Pd(111) dynamic trapping and steering effects are important, and that these effects are not yet well modeled with the potential energy surfaces considered here. Applying the SRP-DFT method to systems where H2 dissociation is non-activated remains difficult. It is suggested that a density functional that yields a broader barrier distribution and has more non-activated pathways than PBE-vdW (i.e., non-activated dissociation at some sites but similarly high barriers at the high energy end of the spectrum) should allow a more accurate description of the available experiments. Finally, it is suggested that new and better characterized molecular beam sticking experiments be done on H2 + Pd(111), to facilitate the development of a more accurate theoretical description of this system.

8.
J Chem Phys ; 138(4): 044708, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23387616

RESUMO

We present new experimental and theoretical results for reactive scattering of dihydrogen from Cu(100). In the new experiments, the associative desorption of H(2) is studied in a velocity resolved and final rovibrational state selected manner, using time-of-flight techniques in combination with resonance-enhanced multi-photon ionization laser detection. Average desorption energies and rotational quadrupole alignment parameters were obtained in this way for a number of (v = 0, 1) rotational states, v being the vibrational quantum number. Results of quantum dynamics calculations based on a potential energy surface computed with a specific reaction parameter (SRP) density functional, which was derived earlier for dihydrogen interacting with Cu(111), are compared with the results of the new experiments and with the results of previous molecular beam experiments on sticking of H(2) and on rovibrationally elastic and inelastic scattering of H(2) and D(2) from Cu(100). The calculations use the Born-Oppenheimer and static surface approximations. With the functional derived semi-empirically for dihydrogen + Cu(111), a chemically accurate description is obtained of the molecular beam experiments on sticking of H(2) on Cu(100), and a highly accurate description is obtained of rovibrationally elastic and inelastic scattering of D(2) from Cu(100) and of the orientational dependence of the reaction of (v = 1, j = 2 - 4) H(2) on Cu(100). This suggests that a SRP density functional derived for H(2) interacting with a specific low index face of a metal will yield accurate results for H(2) reactively scattering from another low index face of the same metal, and that it may also yield accurate results for H(2) interacting with a defected (e.g., stepped) surface of that same metal, in a system of catalytic interest. However, the description that was obtained of the average desorption energies, of rovibrationally elastic and inelastic scattering of H(2) from Cu(100), and of the orientational dependence of reaction of (v = 0, j = 3 - 5, 8) H(2) on Cu(100) compares less well with the available experiments. More research is needed to establish whether more accurate SRP-density functional theory dynamics results can be obtained for these observables if surface atom motion is added to the dynamical model. The experimentally and theoretically found dependence of the rotational quadrupole alignment parameter on the rotational quantum number provides evidence for rotational enhancement of reaction at low translational energies.


Assuntos
Cobre/química , Hidrogênio/química , Teoria Quântica , Algoritmos , Rotação , Vibração
9.
J Chem Phys ; 137(5): 054703, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22894367

RESUMO

A model for taking into account surface temperature effects in molecule-surface reactions is reported and applied to the dissociation of H(2) and D(2) on Cu(111). In contrast to many models developed before, the model constructed here takes into account the effects of static corrugation of the potential energy surface rather than energy exchange between the impinging hydrogen molecule and the surface. Such an approximation is a vibrational sudden approximation. The quality of the model is assessed by comparison to a recent density functional theory study. It is shown that the model gives a reasonable agreement with recently performed ab initio molecular dynamics calculations, in which the surface atoms were allowed to move. The observed broadening of the reaction probability curve with increasing surface temperature is attributed to the displacement of surface atoms, whereas the effect of thermal expansion is found to be primarily a shift of the curve to lower energies. It is also found that the rotational quadrupole alignment parameter is generally lowered at low energies, whereas it remains approximately constant at high energies. Finally, it is shown that the approximation of an ideal static surface works well for low surface temperatures, in particular for the molecular beams for this system (T(s) = 120 K). Nonetheless, for the state-resolved reaction probability at this surface temperature, some broadening is found.

10.
Phys Chem Chem Phys ; 13(18): 8583-97, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21487588

RESUMO

We present a combined experimental and theoretical study of the diffraction of H(2) from Ru(0001) in the incident energy range 78-150 meV, and a theoretical study of dissociative chemisorption of H(2) in the same system. Pronounced out-of-plane diffraction was observed in the whole energy range studied. The energy dependence of the elastic diffraction intensities was measured along the two main symmetry directions for a fixed parallel translational energy. The data were compared with quantum dynamics calculations performed by using DFT-based, six-dimensional potential energy surfaces calculated with both the PW91 and RPBE functionals, as well as with a functional obtained from a weighted average of both (the MIX functional, which was earlier shown to perform quite well for H(2) + Cu(111)). Our results show that the PW91 functional describes the H(2) diffraction intensities more accurately than the RPBE and the MIX functionals, although the absolute values of these intensities are overestimated in the calculations. For the reaction probabilities a preference for one or the other functional cannot be given over the entire energy range probed by the sticking experiments. The PW91 functional yields too high reaction probabilities over the entire investigated energy range, but is better than RPBE at low collision energies (<0.1 eV). The RPBE functional gives too low reaction probabilities at low energy and somewhat too high reaction probabilities at high energy, but agrees better with experiment than PW91 for energies >0.1 eV. The results suggest that, in order to get a better description of both H(2) diffraction and dissociative chemisorption for this system, a specific reaction parameter functional for H(2) + Ru(0001) is needed that is a weighted average of functionals other than PW91 and RPBE. We speculate that differences between the H(2) + Ru(0001) system (early and low reaction barrier) and H(2) + Cu(111) (late and high reaction barrier) may well lead to fundamentally different specific reaction parameter functionals, and that including a reasonable accurate description of the van der Waals interaction might be important for H(2) + Ru(0001) which has barriers localised far away from the surface. Based on our results we advocate new, systematic combined theoretical and experimental studies of H(2) interacting with transition metals in early and late barrier systems, with the aim of determining whether specific reaction parameter functionals for these systems might differ in a systematic way.

11.
Phys Ther ; 79(8): 767-75, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10440663

RESUMO

BACKGROUND AND PURPOSE: Diabetic neuropathy can produce severe pain. The purpose of this case report is to describe the alteration of pain in a patient with severe, painful diabetic neuropathy following application of transcutaneous electrical nerve stimulation (TENS) to the low back. CASE DESCRIPTION: The patient was a 73-year-old woman with pain in the left lower extremity over the lateral aspect of the hip and the entire leg below the knee. The pain prevented sound sleep. The intensity of pain was assessed with a visual analog scale. INTERVENTION: The TENS (80 Hz) was delivered 1 to 2 hours a day and during the entire night through electrodes placed on the lumbar area of the back. OUTCOMES: Following 20 minutes of TENS on the first day of treatment, the patient reported a 38% reduction in intensity of pain. After 17 days, the patient reported no pain following 20 minutes of TENS and that she could sleep through the night. Application of TENS to the skin of the lumbar area may be an effective treatment for the pain of diabetic neuropathy.


Assuntos
Neuropatias Diabéticas/terapia , Estimulação Elétrica Nervosa Transcutânea/métodos , Idoso , Neuropatias Diabéticas/fisiopatologia , Feminino , Humanos , Perna (Membro)/inervação , Região Lombossacral , Medição da Dor , Resultado do Tratamento
12.
J Chem Phys ; 122(15): 154706, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15945655

RESUMO

We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonactivated dissociative chemisorption, respectively) using realistic potential energy surfaces obtained from first principles. Comparisons with experimental results and 6D quantum dynamical calculations show that, in general, the method is able to predict the relative intensity of the most important diffraction peaks. We therefore conclude that classical mechanics can be an efficient guide for experimentalists in the search for the most significant diffraction channels.

13.
J Chem Phys ; 121(22): 11379-87, 2004 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-15634096

RESUMO

Six-dimensional quantum dynamical calculations are reported for the dissociative chemisorption of (v=0, 1, j=0) H(2) on Cu(100), and for rovibrationally inelastic scattering of (v=1, j=1) H(2) from Cu(100). The dynamics results were obtained using a new potential-energy surface (PES5), which was based on density-functional calculations using a slab representation of the adsorbate-substrate system and a generalized gradient approximation to the exchange-correlation energy. A very accurate method (the corrugation reducing procedure) was used to represent the density-functional theory data in a global potential-energy surface. With the new, more accurately fitted PES5, the agreement between the dynamics results and experimental results for reaction and rovibrationally elastic scattering is not as good as was obtained with a previous potential-energy surface (PES4), which was based on a subset of the density-functional theory data not yet including the results for the low-symmetry Cu sites. Preliminary density-functional theory results suggest that the agreement between theory and experiment will improve over that obtained with PES5 if the density-functional calculations are repeated using a larger basis set and using more copper layers than employed in PES4 and PES5.

14.
Phys Rev Lett ; 93(24): 246104, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15697832

RESUMO

We have measured in-plane and out-of-plane diffraction of H2 and D2 molecular beams scattered by reactive Pd(111) and nonreactive NiAl(110) surfaces at 140-150 meV. A comparison with six-dimensional quantum dynamics and classical trajectory calculations shows for the first time that accurate diffraction patterns can be obtained from state-of-the-art potential energy surfaces based on density functional theory. Our measurements show that, at general incidence conditions, out-of-plane diffraction is much more important than was assumed in previous experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA