Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Exp Bot ; 73(5): 1623-1642, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34758072

RESUMO

A purple acid phosphatase, GmPAP2.1, from the soybean (Glycine max) cultivar L29 may function as a resistance factor acting against specific strains of Soybean mosaic virus (SMV). In this study, we found that overexpression of GmPAP2.1 from L29 conferred SMV resistance to a susceptible cultivar, Lee 74. We determined that GmPAP2.1 interacted with the SMV protein P1 in the chloroplasts, resulting in the up-regulation of the ICS1 gene, which in turn promoted the pathogen-induced salicylic acid (SA) pathway. SA accumulation was elevated in response to the co-expression of GmPAP2.1 and SMV, while transient knockdown of endogenous SA-related genes resulted in systemic infection by SMV strain G5H, suggesting that GmPAP2.1-derived resistance depended on the SA-pathway for the activation of a defense response. Our findings thus suggest that GmPAP2.1 purple acid phosphatase of soybean cultivar L29 functions as an SA-pathway-dependent resistance factor acting against SMV.


Assuntos
Glycine max , Potyvirus , Fosfatase Ácida , Doenças das Plantas/genética , Glycine max/genética , Glycine max/metabolismo
2.
Plant Dis ; 2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253495

RESUMO

Boxwood (Buxus spp.) are evergreen landscaping plants commonly used as hedges and fresh greenery. In July and August 2020, boxwood (Buxus microphylla Sieb. et Zucc) samples with blight symptoms were collected from the parterres of Seoul National University (Seoul, Republic of Korea). Diseased leaves and stem tissues were soaked in 1% sodium hypochlorite for 1 min, rinsed with sterile water, cultured on potato dextrose agar (PDA; Difco, Sparks, MD, USA) and incubated at 25 ℃ for 5 days. Four isolates (B2S72-1, B2S7-3, B3B2, and B4L3-3) were pure-cultured using the single-spore isolation method. Light pink-colored sporodochia containing one-celled, fusoid conidia were observed on PDA. Mean conidial size was 9.11 × 3.79 µm and ranged from 7.68 to 10.71 × 3.18 to 4.92 µm. Morphological features suggested that these isolates possessed the same characteristics as previously described for P. buxi (Bezerra, 1963, Yang et al., 2021). Genomic DNA was extracted from each isolate and the internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA), ß-tubulin coding sequence, and D1/D2 region of the large subunit of the rDNA gene cluster (LSU) were amplified using the primer pairs ITS4/ITS5 (White et al., 1990), Btub4Rd/Btub2Fd (Woudenberg et al., 2009), and LR0R/LR5 (Rehner & Samuels, 1994, Vilgalys & Hester, 1990), respectively. The sequences were deposited in GenBank (GenBank accessions No. OM169273-OM169276, OM176571-OM176574, OM176566-OM176569). BLAST search showed high similarity to GenBank sequences of the ex-type strain of P. buxi for ITS (≥99.50%, MH892589.1 and MH892583.1). In addition, neighbor-joining (NJ) phylogeneticnalysis was performed using MEGA-X based on the combined sequences. The four isolates were clustered on the same clade with Pseudonectria buxi reference strains with a high bootstrap value (100 %). For the pathogenicity test, leaves of 1-year-old boxwood were given a single cut with a razor blade and a 5-mm PDA mycelial plug was placed on the wound site. Plants were kept in a transparent box at 25°C with a 12-h photoperiod. After 21 days, inoculated leaves had turned yellow and orange to pink sporodochia were observed. P. buxi was successfully reisolated from the symptomatic tissues but not from the control leaves, therefore Koch's postulates were completed. To our knowledge, this is the first report of Volutella blight caused by P. buxi in the Republic of Korea.

3.
Fungal Genet Biol ; 149: 103540, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33607281

RESUMO

Genetically encoded Ca2+ indicators (GECIs) enable long-term monitoring of cellular and subcellular dynamics of this second messenger in response to environmental and developmental cues without relying on exogenous dyes. Continued development and optimization in GECIs, combined with advances in gene manipulation, offer new opportunities for investigating the mechanism of Ca2+ signaling in fungi, ranging from documenting Ca2+ signatures under diverse conditions and genetic backgrounds to evaluating how changes in Ca2+ signature impact calcium-binding proteins and subsequent cellular changes. Here, we attempted to express multi-color (green, yellow, blue, cyan, and red) circularly permuted fluorescent protein (FP)-based Ca2+ indicators driven by multiple fungal promoters in Fusarium oxysporum, F. graminearum, and Neurospora crassa. Several variants were successfully expressed, with GCaMP5G driven by the Magnaporthe oryzae ribosomal protein 27 and F. verticillioides elongation factor-1α gene promoters being optimal for F. graminearum and F. oxysporum, respectively. Transformants expressing GCaMP5G were compared with those expressing YC3.60, a ratiometric Cameleon Ca2+ indicator. Wild-type and three Ca2+ signaling mutants of F. graminearum expressing GCaMP5G exhibited improved signal-to-noise and increased temporal and spatial resolution and are also more amenable to studies involving multiple FPs compared to strains expressing YC3.60.


Assuntos
Sinalização do Cálcio/genética , Cálcio/metabolismo , Fungos/metabolismo , Ascomicetos/genética , Cálcio/química , Sinalização do Cálcio/fisiologia , Fusarium/genética , Indicadores e Reagentes/química , Proteínas Luminescentes/genética , Neurospora crassa/genética
4.
Environ Microbiol ; 22(7): 2596-2612, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32100421

RESUMO

Fungal sexual reproduction requires complex cellular differentiation processes of hyphal cells. The plant pathogenic fungus Fusarium graminearum produces fruiting bodies called perithecia via sexual reproduction, and perithecia forcibly discharge ascospores into the air for disease initiation and propagation. Lipid metabolism and accumulation are closely related to perithecium formation, yet the molecular mechanisms that regulate these processes are largely unknown. Here, we report that a novel fungal specific bZIP transcription factor, F. graminearum perithecium overproducing 1 (Fpo1), plays a role as a global transcriptional repressor during perithecium production and maturation in F. graminearum. Deletion of FPO1 resulted in reduced vegetative growth, asexual sporulation and virulence and overproduced perithecium, which reached maturity earlier, compared with the wild type. Intriguingly, the hyphae of the fpo1 mutant accumulated excess lipids during perithecium production. Using a combination of molecular biological, transcriptomic and biochemical approaches, we demonstrate that repression of FPO1 after sexual induction leads to reprogramming of carbon metabolism, particularly fatty acid production, which affects sexual reproduction of this fungus. This is the first report of a perithecium-overproducing F. graminearum mutant, and the findings provide comprehensive insight into the role of modulation of carbon metabolism in the sexual reproduction of fungi.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carbono/metabolismo , Carpóforos/metabolismo , Fusarium/genética , Fusarium/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Fusarium/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Metabolismo dos Lipídeos/genética , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo
5.
PLoS Genet ; 13(2): e1006595, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28146558

RESUMO

Various ascomycete fungi possess sex-specific molecular mechanisms, such as repeat-induced point mutations, meiotic silencing by unpaired DNA, and unusual adenosine-to-inosine RNA editing, for genome defense or gene regulation. Using a combined analysis of functional genetics and deep sequencing of small noncoding RNA (sRNA), mRNA, and the degradome, we found that the sex-specifically induced exonic small interference RNA (ex-siRNA)-mediated RNA interference (RNAi) mechanism has an important role in fine-tuning the transcriptome during ascospore formation in the head blight fungus Fusarium graminearum. Approximately one-third of the total sRNAs were produced from the gene region, and sRNAs with an antisense direction or 5'-U were involved in post-transcriptional gene regulation by reducing the stability of the corresponding gene transcripts. Although both Dicers and Argonautes partially share their functions, the sex-specific RNAi pathway is primarily mediated by FgDicer1 and FgAgo2, while the constitutively expressed RNAi components FgDicer2 and FgAgo1 are responsible for hairpin-induced RNAi. Based on our results, we concluded that F. graminearum primarily utilizes ex-siRNA-mediated RNAi for ascosporogenesis but not for genome defenses and other developmental stages. Each fungal species appears to have evolved RNAi-based gene regulation for specific developmental stages or stress responses. This study provides new insights into the regulatory role of sRNAs in fungi and other lower eukaryotes.


Assuntos
Éxons/genética , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Análise por Conglomerados , Proteínas Fúngicas/genética , Fusarium/fisiologia , Perfilação da Expressão Gênica/métodos , Mutação , RNA Fúngico/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia
6.
Fungal Genet Biol ; 111: 30-46, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175365

RESUMO

Similar to animals and plants, external stimuli cause dynamic spatial and temporal changes of cytoplasmic Ca2+ in fungi. Such changes are referred as the Ca2+ signature and control cellular responses by modulating the activity or location of diverse Ca2+-binding proteins (CBPs) and also indirectly affecting proteins that interact with CBPs. To understand the mechanism underpinning Ca2+ signaling, therefore, characterization of how Ca2+ moves to and from the cytoplasm to create Ca2+ signatures under different conditions is fundamental. Three genes encoding plasma membrane Ca2+ channels in a Fusarium graminearum strain that expresses a fluorescent protein-based Ca2+ indicator in the cytoplasm were mutagenized to investigate their roles in the generation of Ca2+ signatures under different growth conditions and genetic backgrounds. The genes disrupted include CCH1 and MID1, which encode a high affinity Ca2+ uptake system, and FIG1, encoding a low affinity Ca2+ channel. Resulting mutants were also analyzed for growth, development, pathogenicity and mycotoxin production to determine how loss of each of the genes alters these traits. To investigate whether individual genes influence the function and expression of other genes, phenotypes and Ca2+ signatures of their double and triple mutants, as well as their expression patterns, were analyzed.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Fusarium/metabolismo , Micotoxinas/biossíntese , Canais de Cálcio/genética , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Genes Fúngicos , Hifas/crescimento & desenvolvimento , Mutagênese , Micotoxinas/genética , Fenótipo
7.
Environ Microbiol ; 19(5): 2053-2067, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28296081

RESUMO

Fusarium graminearum is a prominent plant pathogenic fungus causing Fusarium head blight in major cereal crops worldwide. To understand the molecular mechanisms underlying fungal development and virulence, large collections of F. graminearum mutants have been constructed. Cytochrome P450 monooxygenases (P450s) are widely distributed in organisms and are involved in a diverse array of molecular/metabolic processes; however, no systematic functional analysis of P450s has been attempted in filamentous fungi. In this study, we constructed a genome-wide deletion mutant set covering 102 P450s and analyzed these mutants for changes in 38 phenotypic categories, including fungal development, stress responses and responses to several xenobiotics, to build a comprehensive phenotypic dataset. Most P450 mutants showing defective phenotypes were impaired in a single phenotypic trait, demonstrating that our mutant library is a good genetic resource for further fungal genetic studies. In particular, we identified novel P450s specifically involved in virulence (5) and both asexual (1) and sexual development (2). Most P450s seem to play redundant roles in the degradation of xenobiotics in F. graminearum. This study is the first phenome-based functional analysis of P450s, and it provides a valuable genetic resource for further basic and applied biological research in filamentous fungi and other plant pathogens.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Grão Comestível/microbiologia , Proteínas Fúngicas/genética , Fusarium/genética , Xenobióticos/metabolismo , Antifúngicos/metabolismo , Fusarium/patogenicidade , Técnicas de Inativação de Genes , Micélio/genética , Micélio/crescimento & desenvolvimento , Fenótipo , Doenças das Plantas/microbiologia , Deleção de Sequência , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Triticum/microbiologia , Virulência
8.
Mol Microbiol ; 97(5): 942-56, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26036360

RESUMO

Several Fusarium species produce the polyketide mycotoxin zearalenone (ZEA), a causative agent of hyperestrogenic syndrome in animals that is often found in F. graminearum-infected cereals in temperate regions. The ZEA biosynthetic cluster genes PKS4, PKS13, ZEB1 and ZEB2 encode a reducing polyketide synthase, a non-reducing polyketide synthase, an isoamyl alcohol oxidase and a transcription factor respectively. In this study, the production of two isoforms (ZEB2L and ZEB2S) from the ZEB2 gene in F. graminearum via an alternative promoter was characterized. ZEB2L contains a basic leucine zipper (bZIP) DNA-binding domain at the N-terminus, whereas ZEB2S is an N-terminally truncated form of ZEB2L that lacks the bZIP domain. Interestingly, ZEA triggers the induction of both ZEB2L and ZEB2S transcription. ZEB2L and ZEB2S interact with each other to form a heterodimer that regulates ZEA production by reducing the binding affinity of ZEB2L for the ZEB2L gene promoter. Our study provides insight into the autoregulation of ZEB2 expression by alternative promoter usage and a feedback loop during ZEA production; this regulatory mechanism is similar to that observed in higher eukaryotes.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zearalenona/biossíntese , Grão Comestível/química , Retroalimentação Fisiológica , Proteínas Fúngicas/química , Fusarium/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica , Homeostase , Zíper de Leucina , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Isoformas de Proteínas , Multimerização Proteica , Fatores de Transcrição/química , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido , Zearalenona/farmacologia
9.
Environ Microbiol ; 17(6): 2048-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25627458

RESUMO

Sodium is an abundant cation required for protein function and maintenance of cellular osmotic homeostasis. High concentrations of sodium are toxic, and fungi have evolved efficient sodium efflux systems. In this study, we characterized a novel sodium tolerance mechanism in the plant pathogen Fusarium graminearum. Fusarium graminearum sodium sensitive 1 (Fss1) is a nuclear transcription factor with a Zn(II)2 Cys6 fungal-type DNA-binding domain required for sodium tolerance. RNA-seq and genetic studies revealed that a P-type ATPase pump, exitus natru (Latin: exit sodium) 1 (FgEna5), mediates the phenotypic defects of FSS1 mutants. A homologue of PACC (PAC1) was required for FgEna5-dependent sodium and lithium tolerance independent of Fss1. The results of this study revealed that F. graminearum has a distinct and novel pathway for sodium tolerance not present in other model fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Lítio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , ATPase Trocadora de Sódio-Potássio/genética , Fatores de Transcrição/genética
10.
Eukaryot Cell ; 13(1): 87-98, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186953

RESUMO

Fusarium graminearum, a prominent fungal pathogen that infects major cereal crops, primarily utilizes asexual spores to spread disease. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we functionally characterized the F. graminearum ortholog of Aspergillus nidulans wetA, which has been shown to be involved in conidiogenesis and conidium maturation. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidial dormancy by suppressing microcycle conidiation in F. graminearum. Transcriptome analyses demonstrated that most of the putative conidiation-related genes are expressed constitutively and that only a few genes are specifically involved in F. graminearum conidiogenesis. The conserved and distinct roles identified for WetA in F. graminearum provide new insights into the genetics of conidiation in filamentous fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/genética , Sequência de Aminoácidos , Autofagia , Proteínas Fúngicas/genética , Fusarium/metabolismo , Fusarium/fisiologia , Genes Fúngicos , Resposta ao Choque Térmico , Dados de Sequência Molecular , Micélio/citologia , Micélio/crescimento & desenvolvimento , Estresse Oxidativo , Fenótipo , Deleção de Sequência , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento , Transcriptoma , Virulência/genética
11.
Eukaryot Cell ; 13(3): 427-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24465002

RESUMO

The survival of cellular organisms depends on the faithful replication and transmission of DNA. Regulatory factor X (RFX) transcription factors are well conserved in animals and fungi, but their functions are diverse, ranging from the DNA damage response to ciliary gene regulation. We investigated the role of the sole RFX transcription factor, RFX1, in the plant-pathogenic fungus Fusarium graminearum. Deletion of rfx1 resulted in multiple defects in hyphal growth, conidiation, virulence, and sexual development. Deletion mutants of rfx1 were more sensitive to various types of DNA damage than the wild-type strain. Septum formation was inhibited and micronuclei were produced in the rfx1 deletion mutants. The results of the neutral comet assay demonstrated that disruption of rfx1 function caused spontaneous DNA double-strand breaks (DSBs). The transcript levels of genes involved in DNA DSB repair were upregulated in the rfx1 deletion mutants. DNA DSBs produced micronuclei and delayed septum formation in F. graminearum. Green fluorescent protein (GFP)-tagged RFX1 localized in nuclei and exhibited high expression levels in growing hyphae and conidiophores, where nuclear division was actively occurring. RNA-sequencing-based transcriptomic analysis revealed that RFX1 suppressed the expression of many genes, including those required for the repair of DNA damage. Taken together, these findings indicate that the transcriptional repressor rfx1 performs crucial roles during normal cell growth by maintaining genome integrity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/genética , Genoma Fúngico , Instabilidade Genômica , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Fusarium/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/genética , Regulação para Cima
12.
Mol Plant Microbe Interact ; 27(12): 1344-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25083910

RESUMO

Fusarium graminearum is an important fungal plant pathogen that causes serious losses in cereal crop yields and mycotoxicoses in humans and livestock. In this study, we characterized an insertion mutant, Z39R9282, with pleiotropic defects in sexual development and virulence. We determined that the insertion occurred in a gene encoding an ortholog of yeast elongator complex protein 3 (ELP3). Deletion of elp3 led to significant defects in sexual and asexual development in F. graminearum. In the elp3 deletion mutant, the number of perithecia formed was reduced and maturation of perithecia was delayed. This mutant also produced morphologically abnormal ascospores and conidia. Histone acetylation in the elp3 deletion mutant was reduced compared with the wild type, which likely caused the developmental defects. Trichothecenes were not produced at detectable levels, and expression of trichothecene biosynthesis genes were significantly reduced in the elp3 deletion mutant. Infection of wheat heads revealed that the elp3 deletion mutant was unable to spread from inoculated florets to neighboring spikelets. Furthermore, the elp3 deletion mutant was more sensitive to oxidative stress than the wild type, and the expression of putative catalase genes was reduced. We demonstrate that elp3 functions in sexual and asexual development, virulence, and the oxidative stress response of F. graminearum by regulating the expression of genes involved in these various developmental processes.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Acetilação , Topos Floridos/microbiologia , Proteínas Fúngicas/genética , Fusarium/citologia , Fusarium/crescimento & desenvolvimento , Fusarium/fisiologia , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Hifas , Mutagênese Insercional , Estresse Oxidativo , Fenótipo , Estrutura Terciária de Proteína , Esporos Fúngicos , Tricotecenos/metabolismo , Virulência
13.
Curr Genet ; 60(1): 35-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24057127

RESUMO

Sucrose non-fermenting 1 (SNF1) protein kinase complex is a heterotrimer that functions in energy homeostasis in eukaryotes by regulating transcription of glucose-repressible genes. Our previous study revealed that SNF1 of the homothallic ascomycete fungus Fusarium graminearum plays important roles in vegetative growth, sexual development, and virulence. In this study, we further identified the components of the SNF1 complex in F. graminearum and characterized their functions. We found that the SNF1 complex in F. graminearum consists of one alpha subunit (FgSNF1), one beta subunit (FgGAL83), and one gamma subunit (FgSNF4). Deletion of Fggal83 and Fgsnf4 resulted in alleviated phenotype changes in vegetative growth and sexual development as compared to those of the Fgsnf1 deletion mutant. However, all of the single, double, and triple deletion mutants among Fgsnf1, Fggal83, and Fgsnf4 had similar levels of decreased virulence. In addition, there was no synergistic effect of the mutant (single, double, or triple deletions of SNF1 complex component genes) phenotypes except for sucrose utilization. In this study, we revealed that FgSNF1 is mainly required for SNF1 complex functions, and the other two SNF1 complex components have adjunctive roles with FgSNF1 in sexual development and vegetative growth but have a major role in virulence in F. graminearum.


Assuntos
Ascomicetos/genética , Fusarium/genética , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Deleção de Genes , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Transcrição Gênica , Triticum/microbiologia , Técnicas do Sistema de Duplo-Híbrido , Virulência
14.
Plant Pathol J ; 40(3): 235-250, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835295

RESUMO

During the infection process, plant pathogenic fungi encounter plant-derived oxidative stress, and an appropriate response to this stress is crucial to their survival and establishment of the disease. Plant pathogenic fungi have evolved several mechanisms to eliminate oxidants from the external environment and maintain cellular redox homeostasis. When oxidative stress is perceived, various signaling transduction pathways are triggered and activate the downstream genes responsible for the oxidative stress response. Despite extensive research on antioxidant systems and their regulatory mechanisms in plant pathogenic fungi, the specific functions of individual antioxidants and their impacts on pathogenicity have not recently been systematically summarized. Therefore, our objective is to consolidate previous research on the antioxidant systems of plant pathogenic fungi. In this review, we explore the plant immune responses during fungal infection, with a focus on the generation and function of reactive oxygen species. Furthermore, we delve into the three antioxidant systems, summarizing their functions and regulatory mechanisms involved in oxidative stress response. This comprehensive review provides an integrated overview of the antioxidant mechanisms within plant pathogenic fungi, revealing how the oxidative stress response contributes to their pathogenicity.

15.
J Microbiol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080148

RESUMO

Fusarium graminearum is an important plant pathogen that causes head blight in cereal crops such as wheat, barley, and rice worldwide. In this study, we identified and functionally characterized FgVAC1, an essential gene in F. graminearum that encodes a Rab5 effector involved in membrane tethering functions. The essentiality of FgVAC1 was confirmed through a conditional promoter replacement strategy using the zearalenone-inducible promoter (PZEAR). Cytological analyses revealed that FgVac1 colocalizes with FgRab51 on early endosomes and regulates the proper transport of the vacuolar hydrolase FgCpy1 to the vacuole. Suppression of FgVAC1 led to inhibited vegetative growth, reduced asexual and sexual reproduction, decreased deoxynivalenol (DON) biosynthesis, and diminished pathogenicity. Our findings highlight the significant role of FgVac1 in vacuolar protein sorting, fungal development, and plant infection in F. graminearum.

16.
Microbiol Res ; 283: 127692, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508088

RESUMO

NADP/NADPH plays an indispensable role in cellular metabolism, serving as a pivotal cofactor in numerous enzymatic processes involved in anabolic pathways, antioxidant defense, and the biosynthesis of essential cellular components. NAD/NADH kinases (NADKs) phosphorylate NAD/NADH, constituting the sole de novo synthetic pathway for NADP/NADPH generation. Despite the pivotal role of NADP/NADPH in cellular functions, the physiological role of NADK remains largely unexplored in filamentous fungi. In this study, we identified three putative NADKs in Fusarium graminearum-FgNadk1, FgNadk2, and FgNadk3-responsible for NAD/NADH phosphorylation. NADK-mediated formation of intracellular NADPH proved crucial for vegetative growth, sexual reproduction, and virulence. Specifically, FgNadk2, the mitochondrial NADK, played a role in oxidative stress resistance and the maintenance of mitochondrial reactive oxygen species levels. Moreover, the deletion of FgNADK2 resulted in arginine auxotrophy, contributing to the reduced fungal virulence. These findings underscore the necessity of mitochondrial NADK in fungal virulence in F. graminearum, revealing its involvement in mitochondrial redox homeostasis and the arginine biosynthetic pathway. This study provides critical insights into the interconnectedness of metabolic pathways essential for fungal growth, stress response, and pathogenicity.


Assuntos
Fusarium , NAD , Virulência , NAD/metabolismo , NADP/metabolismo , Estresse Oxidativo , Oxirredução , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
17.
Plant Pathol J ; 40(2): 106-114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606441

RESUMO

Fusarium head blight (FHB), predominantly caused by Fusarium graminearum and F. asiaticum, is a significant fungal disease impacting small-grain cereals. The absence of highly resistant cultivars underscores the need for vigilant FHB surveillance to mitigate its detrimental effects. In 2023, a notable FHB outbreak occurred in the southern region of Korea. We assessed FHB disease severity by quantifying infected spikelets and grains. Isolating fungal pathogens from infected samples often encounters interference from various microorganisms. We developed a cost-effective, selective medium, named BGT (Burkholderia glumae Toxoflavin) medium, utilizing B. glumae, which is primarily known for causing bacterial panicle blight in rice. This medium exhibited selective growth properties, predominantly supporting Fusarium spp., while substantially inhibiting the growth of other fungi. Using the BGT medium, we isolated F. graminearum and F. asiaticum from infected wheat and barley samples across Korea. To further streamline the process, we used a direct PCR approach to amplify the translation elongation factor 1-α (TEF-1α) region without a separate genomic DNA extraction step. Phylogenetic analysis of the TEF-1α region revealed that the majority of the isolates were identified as F. asiaticum. Our results demonstrate that BGT medium is an effective tool for FHB diagnosis and Fusarium strain isolation.

18.
J Agric Food Chem ; 72(11): 6028-6039, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457781

RESUMO

The fungal cell wall, primarily comprising a glucan-chitin matrix and cell wall proteins (CWPs), serves as a key mediator for fungal interactions with the environment and plays a pivotal role in virulence. In this study, we employed a comprehensive proteomics approach to analyze the CWPs in the plant pathogenic fungus Fusarium graminearum. Our methodology successfully extracted and identified 1373 CWPs, highlighting their complex linkages, including noncovalent bonds, disulfide bridges, alkali-sensitive linkages, and glycosylphosphatidylinositol (GPI) anchors. A significant subset of these proteins, enriched in Gene Ontology terms, suggest multifunctional roles of CWPs. Through the integration of transcriptomic and proteomic data, we observed differential expression patterns of CWPs across developmental stages. Specifically, we focused on two genes, Fca7 and Cpd1, which were upregulated in planta, and confirmed their localization predominantly outside the plasma membrane, primarily in the cell wall and periplasmic space. The disruption of FCA7 reduced virulence on wheat, aligning with previous findings and underscoring its significance. Overall, our findings offer a comprehensive proteomic profile of CWPs in F. graminearum, laying the groundwork for a deeper understanding of their roles in the development and interactions with host plants.


Assuntos
Proteínas Fúngicas , Fusarium , Proteínas Fúngicas/metabolismo , Proteômica , Parede Celular/química , Fusarium/genética , Fusarium/metabolismo , Doenças das Plantas
19.
Front Microbiol ; 15: 1383055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721603

RESUMO

Phasmatodea, commonly known as stick insects, are recognized as noteworthy pests globally, impacting agriculture and forest ecosystems. Among them, the outbreak of Ramulus mikado has emerged as a notable concern in East Asian forests. Recently, Metarhizium phasmatodeae has been identified as utilizing stick insects as hosts. We have observed evidence of this entomopathogenic fungus infecting stick insects. Given the increase in these occurrences during the rainy period, this study investigated the relationship between the survival of R. mikado and the M. phasmatodeae infection during the rainy seasons of 2022 and 2023. We collected stick insects in two representative forests of the Republic of Korea and examined insect survival, fungal infection, and various environmental factors. No infections were detected in specimens collected in June before the rainy season, but from July onwards, both the mortality of R. mikado and the fungal infection substantially increased. By the last sampling date of each year, 75% (2022), 71.4% (2023) of the specimens were infected, and over 90% of the total individuals succumbed as a result. Fungi isolated from deceased R. mikado were successfully identified as M. phasmatodeae using morphological and taxonomic approaches. Various statistical analyses, including principal component analysis and modeling, revealed a robust association between fungal infection and the survival of stick insects. The results highlight the correlation between mass deaths of stick insects and fungal infection, particularly during the summer rainy season. These findings offer valuable insights for forecasting R. mikado population in the upcoming year and developing effective pest control strategies.

20.
mBio ; 15(7): e0135124, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38860787

RESUMO

Plant pathogenic fungi cause serious diseases, which result in the loss of crop yields and reduce the quality of crops worldwide. To counteract the escalating risks of chemical fungicides, interest in biological control agents to manage plant diseases has significantly increased. In this study, we comprehensively screened microbial culture filtrates using a yeast screening system to find microbes exhibiting respiratory inhibition activity. Consequently, we found a soil-borne microbe Brevibacillus brevis HK544 strain exhibiting a respiration inhibitory activity and identified edeine B1 (EB1) from the culture filtrate of HK544 as the active compound of the respiration inhibition activity. Furthermore, against a plant pathogenic fungus Fusarium graminearum, our results showed that EB1 has effects on multiple aspects of respiration with the downregulation of most of the mitochondrial-related genes based on transcriptome analysis, differential EB1-sensitivity from targeted mutagenesis, and the synergistic effects of EB1 with electron transport chain complex inhibitors. With the promising plant disease control efficacy of B. brevis HK544 producing EB1, our results suggest that B. brevis HK544 has potential as a biocontrol agent for Fusarium head blight.IMPORTANCEAs a necrotrophic fungus, Fusarium graminearum is a highly destructive pathogen causing severe diseases in cereal crops and mycotoxin contamination in grains. Although chemical control is considered the primary approach to control plant disease caused by F. graminearum, fungicide-resistant strains have been detected in the field after long-term continuous application of fungicides. Moreover, applying chemical fungicides that trigger mycotoxin biosynthesis is a great concern for many researchers. Biocontrol of Fusarium head blight (FHB) by biological control agents (BCAs) represents an alternative approach and could be used as part of the integrated management of FHB and mycotoxin production. The most extensive studies on bacterial BCAs-fungal communications in agroecosystems have focused on antibiosis. Although many BCAs in agricultural ecology have already been used for fungal disease control, the molecular mechanisms of antibiotics produced by BCAs remain to be elucidated. Here, we found a potential BCA (Brevibacillus brevis HK544) with a strong antifungal activity based on the respiration inhibition activity with its active compound edeine B1 (EB1). Furthermore, our results showed that EB1 secreted by HK544 suppresses the expression of the mitochondria-related genes of F. graminearum, subsequently suppressing fungal development and the virulence of F. graminearum. In addition, EB1 exhibited a synergism with complex I inhibitors such as rotenone and fenazaquin. Our work extends our understanding of how B. brevis HK544 exhibits antifungal activity and suggests that the B. brevis HK544 strain could be a valuable source for developing new crop protectants to control F. graminearum.


Assuntos
Brevibacillus , Fusarium , Mitocôndrias , Doenças das Plantas , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Fusarium/genética , Fusarium/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Virulência , Agentes de Controle Biológico/farmacologia , Fungicidas Industriais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA