Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 126: 121-126, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28089270

RESUMO

Forty-eight samples made of CaF2, LiF and YVO4 were placed inside the KSTAR Tokamak and irradiated by neutrons and charged particles from eight plasma pulses. The aim was to provide information for plasma diagnostics. Due to the short pulse durations, the activities induced in the samples were low and therefore measurements were performed in five low-background underground laboratories. Details of the underground measurements, together with data on the quality control amongst the radiometric laboratories, are presented.

2.
Rev Sci Instrum ; 83(12): 123509, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23277989

RESUMO

Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is ~3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D(2) MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA