Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Gastroenterology ; 144(5): 989-1000.e6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23336977

RESUMO

BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress has been associated with development of inflammatory bowel disease. We examined the effects of ER stress-induced chaperone response and the orally active chemical chaperones tauroursodeoxycholate (TUDCA) and 4-phenylbutyrate (PBA), which facilitate protein folding and reduce ER stress, in mice with colitis. METHODS: We used dextran sulfate sodium (DSS) to induce colitis in mice that do not express the transcription factor ATF6α or the protein chaperone P58(IPK). We examined the effects of TUDCA and PBA in cultured intestinal epithelial cells (IECs); in wild-type, P58(IPK-/-), and Atf6α(-/-) mice with colitis; and in Il10(-/-) mice. RESULTS: P58(IPK-/-) and Atf6α(-/-) mice developed more severe colitis following administration of DSS than wild-type mice. IECs from P58(IPK-/-) mice had excessive ER stress, and apoptotic signaling was activated in IECs from Atf6α(-/-) mice. Inflammatory stimuli induced ER stress signals in cultured IECs, which were reduced by incubation with TUDCA or PBA. Oral administration of either PBA or TUDCA reduced features of DSS-induced acute and chronic colitis in wild-type mice, the colitis that develops in Il10(-/-) mice, and DSS-induced colitis in P58(IPK-/-) and Atf6α(-/-) mice. Reduced signs of colonic inflammation in these mice were associated with significantly decreased ER stress in colonic epithelial cells. CONCLUSIONS: The unfolded protein response induces expression of genes that encode chaperones involved in ER protein folding; these factors prevent induction of colitis in mice. Chemical chaperones such as TUDCA and PBA alleviate different forms of colitis in mice and might be developed for treatment of inflammatory bowel diseases.


Assuntos
Colite/genética , Colo/metabolismo , DNA/genética , Regulação da Expressão Gênica , Chaperonas Moleculares/genética , Dobramento de Proteína , Resposta a Proteínas não Dobradas/genética , Animais , Apoptose/genética , Células Cultivadas , Colite/metabolismo , Colite/patologia , Colo/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Transdução de Sinais/genética
2.
Dev Cell ; 13(3): 351-64, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17765679

RESUMO

In vertebrates, three proteins--PERK, IRE1alpha, and ATF6alpha--sense protein-misfolding stress in the ER and initiate ER-to-nucleus signaling cascades to improve cellular function. The mechanism by which this unfolded protein response (UPR) protects ER function during stress is not clear. To address this issue, we have deleted Atf6alpha in the mouse. ATF6alpha is neither essential for basal expression of ER protein chaperones nor for embryonic or postnatal development. However, ATF6alpha is required in both cells and tissues to optimize protein folding, secretion, and degradation during ER stress and thus to facilitate recovery from acute stress and tolerance to chronic stress. Challenge of Atf6alpha null animals in vivo compromises organ function and survival despite functional overlap between UPR sensors. These results suggest that the vertebrate ATF6alpha pathway evolved to maintain ER function when cells are challenged with chronic stress and provide a rationale for the overlap among the three UPR pathways.


Assuntos
Fator 6 Ativador da Transcrição/deficiência , Fator 6 Ativador da Transcrição/metabolismo , Retículo Endoplasmático/metabolismo , Estresse Oxidativo , Fator 6 Ativador da Transcrição/genética , Alelos , Animais , Células Cultivadas , Doença Crônica , Cruzamentos Genéticos , Ditioeritritol/farmacologia , Éxons , Fibroblastos/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Integrases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dobramento de Proteína , RNA Mensageiro/metabolismo , Reagentes de Sulfidrila/farmacologia , Transativadores/genética , Transativadores/metabolismo , Tunicamicina/farmacologia
3.
Nat Med ; 11(7): 757-64, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15980866

RESUMO

Type 2 diabetes is a disorder of hyperglycemia resulting from failure of beta cells to produce adequate insulin to accommodate an increased metabolic demand. Here we show that regulation of mRNA translation through phosphorylation of eukaryotic initiation factor 2 (eIF2alpha) is essential to preserve the integrity of the endoplasmic reticulum (ER) and to increase insulin production to meet the demand imposed by a high-fat diet. Accumulation of unfolded proteins in the ER activates phosphorylation of eIF2alpha at Ser51 and inhibits translation. To elucidate the role of this pathway in beta-cell function we studied glucose homeostasis in Eif2s1(tm1Rjk) mutant mice, which have an alanine substitution at Ser51. Heterozygous (Eif2s1(+/tm1Rjk)) mice became obese and diabetic on a high-fat diet. Profound glucose intolerance resulted from reduced insulin secretion accompanied by abnormal distension of the ER lumen, defective trafficking of proinsulin, and a reduced number of insulin granules in beta cells. We propose that translational control couples insulin synthesis with folding capacity to maintain ER integrity and that this signal is essential to prevent diet-induced type 2 diabetes.


Assuntos
Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Biossíntese de Proteínas/genética , Substituição de Aminoácidos , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/etiologia , Dietas da Moda , Dieta com Restrição de Gorduras , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Chaperona BiP do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/genética , Intolerância à Glucose/genética , Proteínas de Choque Térmico/metabolismo , Homeostase/genética , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Mutantes , Chaperonas Moleculares/metabolismo , Obesidade/genética , Fosforilação , Proinsulina/metabolismo
4.
Cell Rep ; 39(9): 110872, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649369

RESUMO

Type 1 diabetes mellitus (T1D) is a chronic disease with potentially severe complications, and ß-cell deficiency underlies this disease. Despite active research, no therapy to date has been able to induce ß-cell regeneration in humans. Here, we discover the ß-cell regenerative effects of glucagon receptor antibody (anti-GcgR). Treatment with anti-GcgR in mouse models of ß-cell deficiency leads to reversal of hyperglycemia, increase in plasma insulin levels, and restoration of ß-cell mass. We demonstrate that both ß-cell proliferation and α- to ß-cell transdifferentiation contribute to anti-GcgR-induced ß-cell regeneration. Interestingly, anti-GcgR-induced α-cell hyperplasia can be uncoupled from ß-cell regeneration after antibody clearance from the body. Importantly, we are able to show that anti-GcgR-induced ß-cell regeneration is also observed in non-human primates. Furthermore, anti-GcgR and anti-CD3 combination therapy reverses diabetes and increases ß-cell mass in a mouse model of autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Glucagon , Hiperglicemia , Células Secretoras de Insulina , Animais , Modelos Animais de Doenças , Glucagon , Hiperglicemia/tratamento farmacológico , Camundongos , Receptores de Glucagon
5.
J Clin Invest ; 118(10): 3378-89, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18776938

RESUMO

The progression from insulin resistance to type 2 diabetes is caused by the failure of pancreatic beta cells to produce sufficient levels of insulin to meet the metabolic demand. Recent studies indicate that nutrient fluctuations and insulin resistance increase proinsulin synthesis in beta cells beyond the capacity for folding of nascent polypeptides within the endoplasmic reticulum (ER) lumen, thereby disrupting ER homeostasis and triggering the unfolded protein response (UPR). Chronic ER stress promotes apoptosis, at least in part through the UPR-induced transcription factor C/EBP homologous protein (CHOP). We assessed the effect of Chop deletion in multiple mouse models of type 2 diabetes and found that Chop-/- mice had improved glycemic control and expanded beta cell mass in all conditions analyzed. In both genetic and diet-induced models of insulin resistance, CHOP deficiency improved beta cell ultrastructure and promoted cell survival. In addition, we found that isolated islets from Chop-/- mice displayed increased expression of UPR and oxidative stress response genes and reduced levels of oxidative damage. These findings suggest that CHOP is a fundamental factor that links protein misfolding in the ER to oxidative stress and apoptosis in beta cells under conditions of increased insulin demand.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Deleção de Genes , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Estresse Oxidativo/genética , Fator de Transcrição CHOP/deficiência , Fator de Transcrição CHOP/metabolismo , Animais , Apoptose , Proliferação de Células , Sobrevivência Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Dieta , Feminino , Regulação da Expressão Gênica/genética , Células Secretoras de Insulina/patologia , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Oxirredução , Fator de Transcrição CHOP/genética
6.
J Clin Invest ; 115(2): 268-81, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15690081

RESUMO

B lymphocyte differentiation is coordinated with the induction of high-level Ig secretion and expansion of the secretory pathway. Upon accumulation of unfolded proteins in the lumen of the ER, cells activate an intracellular signaling pathway termed the unfolded protein response (UPR). Two major proximal sensors of the UPR are inositol-requiring enzyme 1alpha (IRE1alpha), an ER transmembrane protein kinase/endoribonuclease, and ER-resident eukaryotic translation initiation factor 2alpha (eIF2alpha) kinase (PERK). To elucidate whether the UPR plays an important role in lymphopoiesis, we carried out reconstitution of recombinase-activating gene 2-deficient (rag2-/-) mice with hematopoietic cells defective in either IRE1alpha- or PERK-mediated signaling. IRE1alpha-deficient (ire1alpha-/-) HSCs can proliferate and give rise to pro-B cells that home to bone marrow. However, IRE1alpha, but not its catalytic activities, is required for Ig gene rearrangement and production of B cell receptors (BCRs). Analysis of rag2-/- mice transplanted with IRE1alpha trans-dominant-negative bone marrow cells demonstrated an additional requirement for IRE1alpha in B lymphopoiesis: both the IRE1alpha kinase and RNase catalytic activities are required to splice the mRNA encoding X-box-binding protein 1 (XBP1) for terminal differentiation of mature B cells into antibody-secreting plasma cells. Furthermore, UPR-mediated translational control through eIF2alpha phosphorylation is not required for B lymphocyte maturation and/or plasma cell differentiation. These results suggest specific requirements of the IRE1alpha-mediated UPR subpathway in the early and late stages of B lymphopoiesis.


Assuntos
Diferenciação Celular/fisiologia , Linfopoese/fisiologia , Proteínas de Membrana/metabolismo , Plasmócitos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Rearranjo Gênico do Linfócito B/genética , Rearranjo Gênico do Linfócito B/fisiologia , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Linfopoese/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Desnaturação Proteica/fisiologia , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/genética , Splicing de RNA/genética , Splicing de RNA/fisiologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais/genética , Fatores de Transcrição , Proteína 1 de Ligação a X-Box , eIF-2 Quinase/metabolismo
7.
Endocrinology ; 148(2): 609-17, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17082262

RESUMO

Both the rate of overall translation and the specific acceleration of proinsulin synthesis are known to be glucose-regulated processes in the beta-cell. In this study, we propose that glucose-induced stimulation of overall translation in beta-cells depends on a protein phosphatase-1-mediated decrease in serine-51 phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha), a pivotal translation initiation factor. The decrease was rapid and detectable within 15 min and proportional to the range of glucose concentrations that also stimulate translation. Lowered net eIF2alpha phosphorylation was not associated with a detectable decrease in activity of any eIF2alpha kinase. Moreover, okadaic acid blocked glucose-induced eIF2alpha dephosphorylation, suggesting that the net effect was mediated by a protein phosphatase. Experiments with salubrinal on intact cells and nuclear inhibitor of protein phosphatase-1 (PP1) on cell extracts suggested that this phosphatase was PP1. The net effect contained, however, a component of glucose-induced folding load in the endoplasmic reticulum because coincubation with cycloheximide further amplified the effect of glucose on eIF2alpha dephosphorylation. Thus, the steady-state level of eIF2alpha phosphorylation in beta-cells is the result of a balance between folding-load-induced phosphorylation and PP1-dependent dephosphorylation. Because defects in the pancreatic endoplasmic reticulum kinase-eIF2alpha signaling system lead to beta-cell failure and diabetes, deregulation of the PP1 system could likewise lead to cellular dysfunction and disease.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Cicloeximida/farmacologia , Sinergismo Farmacológico , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Homeostase/fisiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Dobramento de Proteína , Proteína Fosfatase 1 , Inibidores da Síntese de Proteínas/farmacologia , Proteínas/metabolismo , eIF-2 Quinase/metabolismo
8.
Nutr Metab (Lond) ; 14: 48, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28781602

RESUMO

BACKGROUND: Dietary fructose can rapidly cause fatty liver in animals through de novo lipogenesis (DNL) and contribute to the development and severity of nonalcoholic fatty liver disease (NAFLD). In response to diverse cellular insults including endoplasmic reticulum (ER) and oxidative stress, phosphorylation of the eukaryotic translation initiation factor 2 alpha subunit (eIF2α) attenuates general translation initiation, allowing cells to conserve resources and initiate adaptive gene expression to restore homeostasis. The present study aimed to investigate the role of eIF2α phosphorylation in protecting against NAFLD induced by high fructose ingestion in a hepatocyte-specific eIF2α-phosphorylation-deficient mouse model. METHODS: Hepatocyte-specific non-phosphorylatable (S51A) eIF2α knock-in (A/A;fTg/0;CreHep/0, A/AHep ) mice were generated by crossing A/A;fTg/fTg mice with the floxed WT eIF2α transgene (fTg) with Alfp-Cre recombinase transgenic S/A;CreHep/0 (S/A-CreHep ) mice. Hepatocyte-specific eIF2α-phosphorylation-deficient 3-month-old mice or 12-month-old mice were fed a 60% high fructose diet (HFrD) for 16 or 5 wks, and the effects of eIF2α-phosphorylation deficiency on NADP/NADPH and GSSG/GSH levels, ROS-defense gene expression, oxidative damage, cell death, and fibrosis were observed. RESULTS: Prolonged fructose feeding to mice caused dysregulation of the unfolded protein response (UPR) sensor activation and UPR gene expression, and then led to decreased expression of several ROS defense genes including glutathione biogenesis genes. Nonetheless, these changes were not sufficient to induce the death of eIF2α phosphorylation-sufficient hepatocytes. However, there was a substantial increase in hepatocyte death and liver fibrosis in fructose-fed middle-aged mice deficient in hepatocyte-specific eIF2α phosphorylation because of diminished antioxidant capacity due to reduced expression of antioxidant enzymes (GPX1 and HO-1) and lower NADPH and glutathione levels, as well as a possible increase in ROS-induced damage from infiltrating NOX2-expressing leukocytes; all this led to a vicious cycle of hepatocyte death and leukocyte infiltration. CONCLUSION: Our findings suggest that eIF2α phosphorylation maintains NADPH and GSH levels and controls the expression of ROS-defense genes, thereby protecting hepatocytes from oxidative stresses induced by fructose metabolism.

9.
Diabetes ; 64(8): 2892-904, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25795214

RESUMO

Proinsulin misfolding in the endoplasmic reticulum (ER) initiates a cell death response, although the mechanism(s) remains unknown. To provide insight into how protein misfolding may cause ß-cell failure, we analyzed mice with the deletion of P58(IPK)/DnajC3, an ER luminal co-chaperone. P58(IPK-/-) mice become diabetic as a result of decreased ß-cell function and mass accompanied by induction of oxidative stress and cell death. Treatment with a chemical chaperone, as well as deletion of Chop, improved ß-cell function and ameliorated the diabetic phenotype in P58(IPK-/-) mice, suggesting P58(IPK) deletion causes ß-cell death through ER stress. Significantly, a diet of chow supplemented with antioxidant dramatically and rapidly restored ß-cell function in P58(IPK-/-) mice and corrected abnormal localization of MafA, a critical transcription factor for ß-cell function. Antioxidant feeding also preserved ß-cell function in Akita mice that express mutant misfolded proinsulin. Therefore defective protein folding in the ß-cell causes oxidative stress as an essential proximal signal required for apoptosis in response to ER stress. Remarkably, these findings demonstrate that antioxidant feeding restores cell function upon deletion of an ER molecular chaperone. Therefore antioxidant or chemical chaperone treatment may be a promising therapeutic approach for type 2 diabetes.


Assuntos
Antioxidantes/farmacologia , Glicemia/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Homeostase/fisiologia , Células Secretoras de Insulina/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/genética , Homeostase/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Proinsulina/metabolismo , Dobramento de Proteína/efeitos dos fármacos
10.
Inflamm Bowel Dis ; 18(9): 1735-42, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22275310

RESUMO

BACKGROUND: The dsRNA-activated protein kinase (PKR) phosphorylates the α subunit of eukaryotic translation initiation factor 2 (eIF2α), a global regulator of protein synthesis in mammals. In addition, PKR activates several signal transduction pathways including STAT3 and AKT. PKR is activated by a number of inflammatory stimuli that are induced in the inflamed intestine. In this study we intended to determine the role of PKR in colonic epithelial cells during experimental colitis in mice. METHODS: Age- and sex-matched PKR(+/+,+/-) and PKR(-/-) littermate mice were reconstituted with wildtype bone marrow cells and subjected to dextran sodium sulfate (DSS)-induced colitis. RESULTS: PKR(-/-) mice displayed more severe clinical and histological manifestations upon DSS colitis compared with their PKR(+/+,+/-) littermates. In response to DSS colitis, the colonic epithelial cells of PKR(-/-) mice exhibited impaired activation of the unfolded protein response (UPR) signaling, including eIF2α phosphorylation, endoplasmic reticulum (ER) chaperone response, and ER-associated degradation (ERAD) components, as well as antioxidative stress response. In addition, the phosphorylation of STAT3 and AKT, which are protective against epithelial cell death and colonic inflammation, was also impaired in the colonic epithelial cells of PKR(-/-) mice upon DSS colitis. CONCLUSIONS: These data demonstrate that PKR is a physiologically relevant transducer of inflammatory response signaling in colonic epithelial cells. PKR may promote the homeostasis and survival of intestinal epithelial cells (IECs) through eIF2α-mediated UPR activation, as well as the activation of STAT3 and AKT pathways. In the absence of PKR, the survival and proliferation of IECs was impaired, thus exacerbating intestinal inflammation.


Assuntos
Proliferação de Células , Colite/prevenção & controle , Colo/patologia , Epitélio/patologia , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/fisiologia , Animais , Western Blotting , Colite/induzido quimicamente , Colite/enzimologia , Colo/metabolismo , Sulfato de Dextrana/toxicidade , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Feminino , Técnicas Imunoenzimáticas , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
11.
Cell Metab ; 10(1): 13-26, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19583950

RESUMO

Accumulation of unfolded protein within the endoplasmic reticulum (ER) attenuates mRNA translation through PERK-mediated phosphorylation of eukaryotic initiation factor 2 on Ser51 of the alpha subunit (eIF2alpha). To elucidate the role of eIF2alpha phosphorylation, we engineered mice for conditional expression of homozygous Ser51Ala mutant eIF2alpha. The absence of eIF2alpha phosphorylation in beta cells caused a severe diabetic phenotype due to heightened and unregulated proinsulin translation; defective intracellular trafficking of ER cargo proteins; increased oxidative damage; reduced expression of stress response and beta-cell-specific genes; and apoptosis. However, glucose intolerance and beta cell death in these mice were attenuated by a diet containing antioxidant. We conclude that phosphorylation of eIF2alpha coordinately attenuates mRNA translation, prevents oxidative stress, and optimizes ER protein folding to support insulin production. The finding that increased proinsulin synthesis causes oxidative damage in beta cells may reflect events in the beta cell failure associated with insulin resistance in type 2 diabetes.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Células Secretoras de Insulina/metabolismo , Estresse Oxidativo/genética , Biossíntese de Proteínas , Animais , Diferenciação Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/prevenção & controle , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Fator de Iniciação 2 em Eucariotos/genética , Feminino , Homozigoto , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosforilação , Dobramento de Proteína , Transporte Proteico , Transdução de Sinais
12.
Dev Cell ; 15(6): 829-40, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19081072

RESUMO

The unfolded protein response (UPR) is linked to metabolic dysfunction, yet it is not known how endoplasmic reticulum (ER) disruption might influence metabolic pathways. Using a multilayered genetic approach, we find that mice with genetic ablations of either ER stress-sensing pathways (ATF6alpha, eIF2alpha, IRE1alpha) or of ER quality control (p58(IPK)) share a common dysregulated response to ER stress that includes the development of hepatic microvesicular steatosis. Rescue of ER protein processing capacity by the combined action of UPR pathways during stress prevents the suppression of a subset of metabolic transcription factors that regulate lipid homeostasis. This suppression occurs in part by unresolved ER stress perpetuating expression of the transcriptional repressor CHOP. As a consequence, metabolic gene expression networks are directly responsive to ER homeostasis. These results reveal an unanticipated direct link between ER homeostasis and the transcriptional regulation of metabolism, and suggest mechanisms by which ER stress might underlie fatty liver disease.


Assuntos
Retículo Endoplasmático/metabolismo , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Transcrição Gênica , Animais , Carcinoma Hepatocelular/metabolismo , Homeostase , Lipídeos/química , Fígado/metabolismo , Camundongos , Fenótipo , Dobramento de Proteína , Ratos , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo
13.
J Biol Chem ; 280(17): 16925-33, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15684421

RESUMO

Exposure to arsenite inhibits protein synthesis and activates multiple stress signaling pathways. Although arsenite has diverse effects on cell metabolism, we demonstrated that phosphorylation of eukaryotic translation initiation factor 2 at Ser-51 on the alpha subunit was necessary to inhibit protein synthesis initiation in arsenite-treated cells and was essential for stress granule formation. Of the four protein kinases known to phosphorylate eukaryotic translation initiation factor 2alpha, only the heme-regulated inhibitor kinase (HRI) was required for the translational inhibition in response to arsenite treatment in mouse embryonic fibroblasts. In addition, HRI expression was required for stress granule formation and cellular survival after arsenite treatment. In vivo studies elucidated a fundamental requirement for HRI in murine survival upon acute arsenite exposure. The results demonstrated an essential role for HRI in mediating arsenite stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha, inhibition of protein synthesis, stress granule formation, and survival.


Assuntos
Arsenitos , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibroblastos/efeitos dos fármacos , Heme/química , eIF-2 Quinase/fisiologia , Animais , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Mutação , Fosforilação , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Transdução de Sinais , Teratogênicos , Fatores de Tempo , eIF-2 Quinase/metabolismo
14.
Virology ; 317(2): 263-74, 2003 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-14698665

RESUMO

The double-stranded (ds) RNA-activated protein kinase (PKR) plays an important role in control of viral infections and cell growth. We have studied the role of PKR in viral infection in mice that are defective in the PKR signaling pathway. Transgenic mice were derived that constitutively express a trans-dominant-negative kinase-defective mutant PKR under control of the beta-actin promoter. The trans-dominant-negative PKR mutant expressing transgenic mice do not have a detectable phenotype, similar to observations with PKR knock-out mice. The requirement for PKR in viral pathogenesis was studied by intracerebral infection of mice with a mouse-adapted poliovirus. Histopathological analysis revealed diffuse encephalomyelitis with severe inflammatory lesions throughout the central nervous system (CNS) in infected wild-type mice. In contrast, histopathological evaluation of virus-injected trans-dominant-negative PKR transgenic mice as well as PKR knock-out mice yielded no signs of tissue damage associated with inflammatory host responses. However, the virus did replicate in both models of PKR-deficient mice at a level equal to that observed in wild-type infected mice. Although the results indicate a clear difference in susceptibility to poliovirus-induced encephalitis, this difference manifests clinically as a slight delay in fatal neuropathy in trans-dominant-negative PKR transgenic and PKR knock-out animals. Our observations support the finding that viral-induced PKR activation may play a significant role in pathogenesis by mediating the host response to viral CNS infection. They support PKR to be an effective target to control tissue damage due to deleterious host responses to viral infection.


Assuntos
Encefalite Viral/fisiopatologia , Poliomielite/fisiopatologia , Poliovirus/patogenicidade , RNA de Cadeia Dupla/metabolismo , eIF-2 Quinase/metabolismo , Animais , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Encefalite Viral/metabolismo , Encefalite Viral/patologia , Encefalite Viral/virologia , Fator de Iniciação 2 em Eucariotos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células NIH 3T3 , Poliomielite/metabolismo , Poliomielite/patologia , Poliomielite/virologia , RNA de Cadeia Dupla/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA