Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Small ; 19(32): e2301241, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086124

RESUMO

Electrodeposition of copper on gold nanoelectrode ensembles result in the formation of uniform copper oxide layers on individual nanoparticles. A linear sweep of voltammetric change induces three distinct morphologies dependent upon particle density. Ex situ imaging and in situ scatterometry at a single-particle level identifies multi-step electrochemical growth sequences that deviated from classical nucleation and growth pathways. In addition, the study demonstrated the possibility of synthesizing sophisticated structures based on the symmetry of nanoelectrodes. This result guides the nanoscale morphology control of electrode ensembles with potential application in electrocatalysis and sensing.

2.
J Am Chem Soc ; 141(17): 6986-6994, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964296

RESUMO

For long-term storage of renewable energy, the electrochemical carbon dioxide reduction reaction (CO2RR) offers a promising option for converting electricity to permanent forms of chemical energy. In this work, we present highly selective ethylene production dependent upon the catalyst morphology using copper oxide nanoparticles. The branched CuO nanoparticles were synthesized and then deposited on conductive carbon materials. After activation, the major copper species changed to Cu+, and the resulting electrocatalyst exhibited a high Faradaic efficiency (FE) of ethylene reaching over 70% and a hydrogen FE of 30% without any byproducts in a neutral aqueous solution. The catalyst also showed high durability (up to 12 h) with the ethylene FE over 65%. Compared to cubic morphology, the initial branched copper oxide structure formed highly active domains with interfaces and junctions in-between during activation, which caused large surface area with high local pH leading to high selectivity and activity for ethylene production.

3.
Angew Chem Int Ed Engl ; 58(30): 10126-10131, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31106510

RESUMO

Cells use gaseous molecules such as nitric oxide (NO) to transmit both intracellular and intercellular signals. In principle, the endogenous small molecules regulate physiological changes, but it is unclear how randomly diffusive molecules trigger and discriminate signaling programs. Herein, it is shown that gasotransmitters use time-dependent dynamics to discriminate the endogenous and exogenous inputs. For a real-time stimulation of cell signaling, we synthesized a photo-cleavable metal-nitrosyl complex, [CoIII (MDAP)(NO)(CH3 CN)]2+ (MDAP=N,N'-dimethyl-2,11-diaza[3,3](2,6)pyridinophane), which can stably deliver and selectively release NO with fine temporal resolution in the cytosol, and used this to study the extracellular signal-regulated kinases (ERKs), revealing how cells use both exogenous and endogenous NO to disentangle cellular responses. This technique can be to understand how diverse cellular signaling networks are dynamically interconnected and also to control drug delivery systems.


Assuntos
Cobalto/química , Fotólise , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Sistemas de Liberação de Medicamentos , Modelos Moleculares
4.
J Am Chem Soc ; 140(45): 15161-15165, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30380855

RESUMO

Monitoring the dynamics of proteins in live cells on appropriate spatiotemporal scales may provide key information regarding long-standing questions in molecular and cellular regulatory mechanisms. However, tools capable of imaging the conformational changes over time have been elusive. Here, we present a single-molecule stroboscopic imaging probes by developing gyroscopic plasmonic nanoparticles, allowing for replication of protein-protein interactions and the conformational dynamics based on rotational and lateral velocities. This study fundamentally monitors the rotational motion of a membrane protein, epidermal growth factor receptor (EGFR), to decipher undiscovered structural dynamics in live cells without any molecular perturbations. This method offers a strategy to visualize assemblies and conformational changes, and provides unique insights into the mechanism underlying the molecular dynamics for receptors.


Assuntos
Simulação de Dinâmica Molecular , Linhagem Celular , Receptores ErbB/química , Humanos , Ligação Proteica , Conformação Proteica
5.
Nano Lett ; 17(9): 5688-5694, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28850244

RESUMO

Semiconductor-metal hybrid nanostructures are one of the best model catalysts for understanding photocatalytic hydrogen generation. To investigate the optimal structure of metal cocatalysts, metal-CdSe-metal nanodumbbells were synthesized with three distinct sets of metal tips, Pt-CdSe-Pt, Au-CdSe-Au, and Au-CdSe-Pt. Photoelectrochemical responses and transient absorption spectra showed that the competition between the charge recombination at the metal-CdSe interface and the water reduction on the metal surface is a detrimental factor for the apparent hydrogen evolution rate. For instance, a large recombination rate (krec) at the Pt-CdSe interface limits the quantum yield of hydrogen generation despite a superior water reduction rate (kWR) on the Pt surface. To suppress the recombination process, Pt was selectively deposited onto the Au tips of Au-CdSe-Au nanodumbbells in which the krec was diminished at the Au-CdSe interface, and the large kWR was maintained on the Pt surface. As a result, the optimal structure of the Pt-coated Au-CdSe-Au nanodumbbells reached a quantum yield of 4.84%. These findings successfully demonstrate that the rational design of a metal cocatalyst and metal-semiconductor interface can additionally enhance the catalytic performance of the photochemical hydrogen generation reactions.

6.
Angew Chem Int Ed Engl ; 56(24): 6952-6956, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28504411

RESUMO

Controlled oxidation of palladium nanoparticles provided high-valent PdIV oxo-clusters which efficiently promote directed C-H halogenation reactions. In addition, palladium nanoparticles can undergo changes in oxidation states to provide both high-valent PdIV and low-valent Pd0 species within one system, and thus a tandem reaction of C-H halogenation and cross-coupling (C-N, C-C, and C-S bond formation) was successfully established.

7.
Acc Chem Res ; 48(3): 491-9, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25730414

RESUMO

In order to understand heterogeneous catalytic reactions, model catalysts such as a single crystalline surface have been widely studied for many decades. However, catalytic systems that actually advance the reactions are three-dimensional and commonly have multiple components including active metal nanoparticles and metal oxide supports. On the other hand, as nanochemistry has rapidly been developed and been applied to various fields, many researchers have begun to discuss the impact of nanochemistry on heterogeneous catalysis. Metal hybrid nanoparticles bearing multiple components are structurally very close to the actual catalysts, and their uniform and controllable morphology is suitable for investigating the relationship between the structure and the catalytic properties in detail. In this Account, we introduce four typical structures of metal hybrid nanoparticles that can be used to conduct catalytic organic and photochemical reactions. Metal@silica (or metal oxide) yolk-shell nanoparticles, in which metal cores exist in internal voids surrounded by thin silica (or metal oxide) shells, exhibited extremely high thermal and chemical stability due to the geometrical protection of the silica layers against the metal cores. The morphology of the metal cores and the pore density of the hollow shells were precisely adjusted to optimize the reaction activity and diffusion rates of the reactants. Metal@metal oxide core-shell nanoparticles and inverted structures, where the cores supported the shells serving an active surface, exhibited high activity with no diffusion barriers for the reactants and products. These nanostructures were used as effective catalysts for various organic and gas-phase reactions, including hydrogen transfer, Suzuki coupling, and steam methane reforming. In contrast to the yolk- and core-shell structures, an asymmetric arrangement of distinct domains generated acentric dumbbells and tipped rods. A large domain of each component added multiple functions, such as magnetism and light absorption, to the catalytic properties. In particular, metal-semiconductor hybrid nanostructures could behave as effective visible photocatalysts for hydrogen evolution and CO oxidation reactions. Resulting from the large surface area and high local concentration of the reactants, a double-shell hollow structure showed reaction activities higher than those of filled nanoparticles. The introduction of plasmonic Au probes into the Pt-CdS double-shell hollow particles facilitated the monitoring of photocatalytic hydrogen generation that occurred on an individual particle surface by single particle measurements. Further development of catalysis research using well-defined metal hybrid nanocatalysts with various in situ spectroscopic tools provides a means of maximizing catalytic performances until they are comparable to or better than those of homogeneous catalysts, and this would have possibly useful implications for industrial applications.

8.
Nanotechnology ; 25(15): 155303, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24651153

RESUMO

Counterfeiting is conducted in almost every industry, and the losses caused by it are growing as today's world trade continues to increase. In an attempt to provide an efficient method to fight such counterfeiting, we herein demonstrate anti-counterfeit nanoscale fingerprints generated by randomly distributed nanowires. Specifically, we prepare silver nanowires coated with fluorescent dyes and cast them onto the surface of transparent PET film. The resulting non-repeatable patterns characterized by the random location of the nanowires and their fluorescent colors provide unique barcodes suitable for anti-counterfeit purposes. Counterfeiting such a fingerprint pattern is impractical and expensive; the cost of replicating it would be higher than the value of the typical target item being protected. Fingerprint patterns can be visually authenticated in a simple and straightforward manner by using an optical microscope. The concept of generating unique patterns by randomness is not limited to the materials shown in this paper and should be readily applicable to other types of materials.

9.
J Nanosci Nanotechnol ; 14(2): 1872-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24749462

RESUMO

This paper reviews recent developments in the field of hybrid Pd nanoparticles and their catalytic activity in the Suzuki coupling reaction, which is used extensively in the fabrication of both simple and complex biaryl compounds. We developed three types of Pd-silica hybrid nanoparticles. Pd/SiO2 nanobeads containing tiny Pd clusters, Pd@nickel phyllosilicate yolk-shell nanoparticles, Pd@porous SiO2 yolk-shell nanoparticles were synthesized, and they displayed highly efficient catalytic activity and excellent reusability. The hybrid nanoparticles also catalyzed the Suzuki coupling reaction with various substrates, including bromobenzene and chlorobenzene. This review also briefly discusses the synthesis procedure, structural characterization, and catalytic activity of hybrid Pd nanoparticles.


Assuntos
Ácidos Borônicos/química , Halogênios/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Paládio/química , Catálise , Tamanho da Partícula
10.
Nano Lett ; 13(3): 1352-8, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23428162

RESUMO

Hybrid nanocatalysts consisting of metal nanoparticle-semiconductor junctions offer an interesting platform to study the role of metal-oxide interfaces and hot electron flows in heterogeneous catalysis. Here, we report that hot carriers generated upon photon absorption significantly impact the catalytic activity of CO oxidation. We found that Pt-CdSe-Pt nanodumbbells exhibit a higher turnover frequency by a factor of 2 during irradiation by light with energy higher than the bandgap of CdSe, while the turnover rate on bare Pt nanoparticles did not depend on light irradiation. We found that Pt nanoparticles deposited on a GaN substrate under light irradiation exhibit changes in catalytic activity of CO oxidation that depends on the type of doping of the GaN. We suppose that hot electrons are generated upon the absorption of photons by the semiconducting nanorods or substrates, whereafter the hot electrons are injected into the Pt nanoparticles, resulting in the change in catalytic activity. The results imply that hot carrier flows generated during light irradiation significantly influence the catalytic activity of CO oxidation, leading to potential applications as a hot electron-based catalytic actuator.

11.
Langmuir ; 29(44): 13518-26, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24090031

RESUMO

Gold nanoparticles with suitable surface functionalities have been widely used as a versatile nanobioplatform. However, functionalized gold nanoparticles using thiol-terminated ligands have a tendency to aggregate, particularly in many enzymatic reaction buffers containing biological thiols, because of ligand exchange reactions. In the present study, we developed a one-step synthesis of poly(ethylene glycol) (PEG)ylated gold nanoparticles using poly(dimethylaminoethyl methacrylate) (PDMAEMA) in PEG as a polyol solvent. Because of the chelate effect of polymeric functionalities on the gold surface, the resulting PEGylated gold nanoparticles (Au@P-PEG) are very stable under the extreme conditions at which the thiol-monolayer-protected gold nanoparticles are easily coagulated. Using the solvent mixture of PEG and ethylene glycol (EG) and subsequent hydrolysis, gold nanoparticles bearing mixed functionalities of PEG and carboxylate are generated. The resulting particles exhibit selective adsorption of positively charged chymotrypsin (ChT) without nonselective adsorption of bovine serum albumin (BSA). The present nanoparticle system has many advantages, including high stability, simple one-step synthesis, biocompatibility, and excellent binding specificity; thus, this system can be used as a versatile platform for potential bio-related applications, such as separation, sensing, imaging, and assays.


Assuntos
Ácidos Carboxílicos/química , Quimotripsina/análise , Ouro/química , Nanopartículas Metálicas/química , Metacrilatos/química , Nylons/química , Polietilenoglicóis/química , Soroalbumina Bovina/análise , Animais , Bovinos , Técnicas de Química Sintética , Quimotripsina/química , Soroalbumina Bovina/química , Propriedades de Superfície
12.
Phys Chem Chem Phys ; 15(12): 4190-4, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23247539

RESUMO

We investigated the localized surface plasmon resonances of individual AgAuAg nanorods (NRs) using the dark-field spectro-microscopy technique. We find that the scattering spectra of such hetero-NRs show longitudinal resonance wavelengths that are nearly insensitive to the relative composition of Ag and Au. Instead, the resonance is mostly governed by the overall length of the nanorod. This shows that the plasmons oscillate along the entire length of the NR without the significant perturbation at the Ag-Au interfaces. The results demonstrate that the overall geometry as well as the composition determine the tunability of the hetero-metallic nanostructures, and provide an important design rule for the composition-tunable bimetallic plasmon structures.

13.
Adv Sci (Weinh) ; 10(9): e2207187, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683171

RESUMO

Due to severe contemporary energy issues, generating C2+ products from electrochemical carbon dioxide reduction reactions (eCO2 RRs) gains much interest. It is known that the catalyst morphology and active surface structures are critical for product distributions and current densities. Herein, a synthetic protocol of nanoparticle morphology on copper metal-organic frameworks (n-Cu MOFs) is developed by adjusting growth kinetics with termination ligands. Nanoscale copper oxide aggregates composed of small particulates are yielded via calcining the Cu-MOF nanoparticles at a specific temperature. The resulting nanosized MOF-derived catalyst (n-MDC) exhibits Faradaic efficiencies toward ethylene and C2+ products of 63% and 81% at -1.01 V versus reversible hydrogen electrode (RHE) in neutral electrolytes. The catalyst also shows prolonged stability for up to 10 h. A partial current density toward C2+ products is significantly boosted to -255 mA cm-2 in an alkaline flow cell system. Comprehensive analyses reveal that the nanoparticle morphology of pristine Cu MOFs induces homogeneous decomposition of organic frameworks at a lower calcination temperature. It leads to evolving grain boundaries in a high density and preventing severe agglomeration of copper domains, the primary factors for improving eCO2 RR activity toward C2+ production.

14.
Chem Commun (Camb) ; 59(36): 5447-5450, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37067440

RESUMO

A paired electrochemical method is presented for the one-pot synthesis of γ,δ-unsaturated α-amino esters. The method involves the in situ generation of organozinc reagents through zinc chloride reduction on the nickel cathode and the TEMPO-mediated oxidation of amino esters on the carbon anode. The presence of an ester moiety in the amine substrate was found to be crucial for achieving high diastereoselectivity.

15.
Chem Sci ; 14(27): 7553-7558, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449064

RESUMO

In photocatalysis, metal-semiconductor hybrid structures have been proposed for ideal photocatalytic systems. In this study, we investigate the effect of morphology and surface nature of Pt cocatalysts on photocatalytic hydrogen evolution activity in Pt-tipped CdSe nanorods. Three distinct morphologies of Pt cocatalysts were synthesized and employed as visible light photocatalysts. The rough tips exhibit the highest activity, followed by the round and cubic tips. Kinetic investigations using transient absorption spectroscopy reveal that the cubic tips exhibit lower charge-separated states feasible for reacting with water and water reduction rates due to their defectless surface facets. In contrast, the rough tips show a similar charge-separation value but a two-fold higher surface reaction rate than the round tips, resulting in a significant enhancement of hydrogen evolution. These findings highlight the importance of rational design on metal cocatalysts in addition to the main semiconductor bodies for maximizing photocatalytic activities.

16.
J Am Chem Soc ; 134(2): 1221-7, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22176153

RESUMO

Plasmonic nanostructures such as gold nanoparticles are very useful for monitoring chemical reactions because their optical properties are highly dependent upon the environment surrounding the particle surface. Here, we designed the catalytic structure composed of platinized cadmium sulfide with gold domains as a sensitive probe, and we monitored the photocatalytic decomposition of lactic acid to generate hydrogen gas in situ by single-particle dark-field spectroscopy. The plasmon band shift of the gold probe throughout the reaction exhibits significant particle-to-particle variation, and by simulating the reaction kinetics, the rate constant and structural information (including the diffusion coefficient through the shell and the relative arrangement of the active sites) can be estimated for individual catalyst particles. This approach is versatile for the monitoring of various heterogeneous reactions with distinct components at a single-particle level.

17.
J Am Chem Soc ; 134(20): 8392-5, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22563802

RESUMO

Most transition metal oxides have a cubic rocksalt crystal structure, but ZnO and CoO are the only stable transition metal oxides known to possess a hexagonal structure. Unprecedented hexagonal wurtzite MnO has been prepared by thermal decomposition of Mn(acac)(2) on a carbon template. Structural characterization has been carried out by TEM, SAED, and a Rietveld analysis using XRD. The experimental and theoretical magnetic results indicate magnetic ordering of the hexagonal wurtzite MnO. Density functional calculations have been performed in order to understand the electronic and piezoelectric properties of the newly synthesized hexagonal wurtzite MnO.

18.
Langmuir ; 28(24): 9003-9, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22304325

RESUMO

In the present study, we demonstrate the precise tuning of surface plasmon resonance over the full visible range by compositional variation of the nanoparticles. The addition of sulfide ions into the Au@Ag core-shell nanocubes generates stable Au@Ag/Ag(2)S core-shell nanoparticles at room temperature, and the plasmon extinction maximum shifts to the longer wavelength covering the entire visible range of 500-750 nm. Based on the optical property, the Au@Ag core-shell nanocubes are employed as a colorimetric sensing framework for sulfide detection in water. The detection limit is measured to be 10 ppb by UV-vis spectroscopy and 200 ppb by naked eyes. Such nanoparticles would be useful for decoration and sensing purposes, due to their precise color tunability and high stability.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Prata/química , Sulfetos/química , Ressonância de Plasmônio de Superfície
19.
Langmuir ; 28(15): 6441-7, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22443964

RESUMO

The surface of Pd@SiO(2) core-shell nanoparticles (1) was simply modified by the formation of nickel phyllosilicate. The addition of nickel salts formed branched nickel phyllosilicates and generated pores in the silica shells, yielding Pd@SiO(2)-Niphy nanoparticles (Niphy = nickel phyllosilicate; 2, 3). By removal of the silica residue, Pd@Niphy yolk-shell nanoparticles (4) was uniformly obtained. The four distinct nanostructures (1-4) were employed as catalysts for Suzuki coupling reactions with aryl bromide and phenylboronic acid, and the conversion yields were in the order of 1 < 2 < 3 < 4 as the pore volume and surface area of the catalysts increased. The reaction rates were strongly correlated with shell porosity and surface exposure of the metal cores. The chemical inertness of nickel phyllosilicate under the basic conditions rendered the catalysts reusable for more than five times without loss of activity.

20.
Molecules ; 17(11): 13235-53, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23132140

RESUMO

Recent developments in the synthesis of CuO nanoparticles (NPs) and their application to the [3+2] cycloaddition of azides with terminal alkynes are reviewed. With respect to the importance of click chemistry, CuO hollow NPs, CuO hollow NPs on acetylene black, water-soluble double-hydrophilic block copolymer (DHBC) nanoreactors and ZnO–CuO hybrid NPs were synthesized. Non-conventional energy sources such as microwaves and ultrasound were also applied to these click reactions, and good catalytic activity with high regioselectivity was observed. CuO hollow NPs on acetylene black can be recycled nine times without any loss of activity, and water-soluble DHBC nanoreactors have been developed for an environmentally friendly process.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Nanopartículas/química , Acetileno/química , Catálise , Química Click , Reação de Cicloadição , Química Verde , Compostos Heterocíclicos/síntese química , Nanopartículas/ultraestrutura , Povidona/química , Fuligem/química , Termodinâmica , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA