Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(5): 700-709, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962013

RESUMO

Sensorineural hearing loss (SNHL) is caused by the loss of sensory hair cells (HCs) and/or connected spiral ganglion neurons (SGNs). The current clinical conventional treatment for SNHL is cochlear implantation (CI). The principle of CI is to bypass degenerated auditory HCs and directly electrically stimulate SGNs to restore hearing. However, the effectiveness of CI is limited when SGNs are severely damaged. In the present study, oriented nanofiber scaffolds were fabricated using electrospinning technology to mimic the SGN spatial microenvironment in the inner ear. Meanwhile, different proportions of polyaniline (PANI), poly-l-lactide (PLLA), gelatin (Gel) were composited to mimic the composition and mechanical properties of auditory basement membrane. The effects of oriented PANI/PLLA/Gel biomimetic nanofiber scaffolds for neurite outgrowth were analyzed. The results showed the SGNs grew in an orientation along the fiber direction, and the length of the protrusions increased significantly on PANI/PLLA/Gel scaffold groups. The 2% PANI/PLLA/Gel group showed best effects for promoting SGN adhesion and nerve fiber extension. In conclusion, the biomimetic oriented nanofiber scaffolds can simulate the microenvironment of SGNs as well as promote neurite outgrowth in vitro, which may provide a feasible research idea for SGN regeneration and even therapeutic treatments of SNHL in future.


Assuntos
Compostos de Anilina , Nanofibras , Poliésteres , Gânglio Espiral da Cóclea , Gânglio Espiral da Cóclea/fisiologia , Gelatina/farmacologia , Neurônios
2.
Neurosci Lett ; 817: 137518, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37844727

RESUMO

In mammals, aminoglycoside antibiotic-induced injury to hair cells (HCs) and associated spiral ganglion neurons (SGNs) is irreversible and eventually leads to permanent hearing loss. Efforts have been directed towards the advancement of efficacious therapeutic treatments to protect hearing loss, but the ideal substance for treating the damaged cochlear sensory epithelium has yet to be identified. Berberine (BBR), a quaternary ammonium hydroxide extracted from Coptis chinensis, has been found to display potential anti-oxidant and neuroprotective properties. However, its involvement in aminoglycoside antibiotic-induced ototoxicity has yet to be explored or assessed. In the present study, we explored the possible anti-oxidative properties of BBR in mitigating neomycin-triggered ototoxicity. An improved survival of HCs and SGN nerve fibers (NFs) in organ of Corti (OC) explants after neomycin with BBR co-treatment was observed, and BBR treatment attenuated reactive oxygen species (ROS) generation and reduced cleaved caspase-3 signaling by activating six phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling relative subtypes, and the addition of PI3K/AKT suppressor LY294002 resulted in a decrease in the protective effect. The protective effect of BBR against ototoxicity was also evident in a neomycin-injured animal model, as evidenced by the preservation of HC and SGN in mice administered subcutaneous BBR for 7 days. In summary, all results suggest that BBR has potential as a new and effective otoprotective agent, operating via the PI3K/AKT signaling pathway.


Assuntos
Berberina , Perda Auditiva , Ototoxicidade , Animais , Camundongos , Antibacterianos/toxicidade , Apoptose , Berberina/farmacologia , Berberina/uso terapêutico , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Neomicina/toxicidade , Ototoxicidade/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Chemosphere ; 305: 135322, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35709840

RESUMO

Groundwater contamination by microplastics (MPs) has been gradually regarded as a potential human health risk, which calls for detailed investigation of MPs transport behavior in saturated zone. In this study, a series of sand column experiments were carried out to investigate the transport characteristics of large MPs with its diameter of 10-20 µm in porous media, in which the effects of different hydrological conditions and MPs characteristics were examined. Experimental results showed that the increase of water flow rate from 2.2 to 7.5 mL/min significantly increased the maximal outlet MPs concentration by two orders of magnitude, while a larger ratio of MPs diameter to soil particle diameter decreased its mobility. The increase of water salinity from 0 to 25 mmol/L (NaCl) decreased the maximal outlet MPs concentration by 50.5-68.4% for different sized MPs. Since chemical aging would lead to the formation of oxygen-containing functional groups and make MPs more negatively charged, it greatly increased the maximal outlet MPs concentration by 0.53-5.67 times. Compared with the traditional attachment model (AM), the attachment-detachment model (ADM) could better simulate the gradual desorption of large MPs from soil in the process of clean water flushing, indicating the nonnegligible detachment of large MPs from soil. In ADM, the desorption coefficient gradually decreased in the process of clean water flushing, which was only 31.6% of the initial value after flushing kept for 10 PV. Moreover, the equations to calculate the adsorption and desorption coefficients of MPs in the saturated zone were developed, which considered both MPs and aquifer characteristics. Results from this study described the desorption of large MPs in porous media under various conditions, which expands our knowledge about the fate and risk of MPs in underground environment.


Assuntos
Microplásticos , Plásticos , Humanos , Porosidade , Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA