Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Carcinog ; 62(8): 1213-1227, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37144838

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common head and neck squamous cell carcinomas (HNSCC) globally. Its incidence rate is rapidly increasing, and its 5-year survival rate remains at 50%, despite advances in medical science. Trigger transposable element-derived 1 (TIGD1) has been found to be upregulated in various cancer types. However, its biological function in OSCC requires further investigation. We searched the Cancer Genome Atlas database using CIBERSORT and TIMER 2.0 to predict the significance of TIGD1 and evaluate its effect on immune cell infiltration. Gene set enrichment analysis was performed to determine the biological functions of TIGD1. Gain/loss of function techniques were used to explore the biological behavior of TIGD1 in Cal27 and HSC4 cells. Finally, flow cytometry was used to detect dendritic cell markers in an OSCC and dendritic cell co-culture model. Our results show that TIGD1 is upregulated significantly in OSCC and is closely associated with tumor progression and prognosis. TIGD1 functions as an oncogene by increasing cells proliferation, inhibiting apoptosis, promoting cell invasion and migration. TIGD1 is also involved in tumor immune cell infiltration. Its overexpression can inhibit dendritic cell maturation, leading to immune suppression and tumor progression. High TIGD1 expression, which promotes OSCC progression, might be related to decreased dendritic cell maturation and activation. These findings suggest that TIGD1-specific small interfering RNA synthesized in vitro could be a new target for OSCC immunotherapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias Bucais/patologia , Elementos de DNA Transponíveis , Linhagem Celular Tumoral , Oncogenes , Proliferação de Células/genética , Neoplasias de Cabeça e Pescoço/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
2.
Oral Dis ; 29(3): 942-956, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34807506

RESUMO

OBJECTIVES: Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer. Chemotherapy has been recognized as an optional combination treatment, which enhance the overall survival of OSCC patients. However, the majority of patients would suffer therapeutic resistance, which led to the treatment failure and poor prognosis. MATERIALS AND METHODS: To explore the mechanism of chemoresistance in OSCC, we first constructed two chemoresistant cell lines using Cal27 and HSC4. Then MeRIP sequencing together with bioinformatics analysis and a series of in vitro experiments were used to assess the possible regulation manner of RNA methylation on OSCC chemoresistance. Finally, xenograft models were constructed to confirm the relationship among OSCC chemoresistance. RESULTS: METTL3/METTL14 upregulation could enhance OSCC chemoresistance. CEBPA-DT overexpression could regulate METTL3/METTL14 expression and further activate downstream BHLHB9. CEBPA-DT overexpression could inhibit the activity of IL-17 signaling, resulting in the homeostasis breakdown of immune infiltration and cytokine release. CEBPA-DT overexpression could significantly enhance chemoresistance through METTL3/METTL14/BHLHB9 in vivo, which accelerated the tumor growth. CONCLUSIONS: Our results suggest that CEBPA-DT might regulate OSCC chemoresistance through BHLHB9 gene manipulated by METTL3/METTL14 as well as through IL-17 signaling inhibition, which may contribute to the assessment of potential therapeutic targets in OSCC chemoresistance.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Interleucina-17/genética , Metiltransferases/genética , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
3.
Int J Med Sci ; 18(16): 3728-3737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790046

RESUMO

Intrinsic or developing resistance to chemotherapy drugs including cisplatin (CDDP) remains the major limitation of cancer therapeutic efficacy in cancers. Recently, increasing evidence suggested that long noncoding RNAs (lncRNAs) play a critical role in various biological processes of tumors, and have been implicated in resistance to various drugs. However, the role of lncRNAs in cisplatin resistance is poorly understood. Here, we found that the expression of lncRNA CEBPA-DT/CEBPA/BCL2 was upregulated in cisplatin resistance OSCC cells (Cal27-CisR and HSC4-CisR) compared with their parental cells (Cal27 and HSC4). CEBPA-DT overexpression could upregulated both cytoplasmic and nuclear CEBPA expression. Down-regulation of CEBPA-DT enhances cisplatin sensitivity, facilitates cell apoptosis in cisplatin-resistant OSCC cells. In addition, we identified that CEBPA-DT regulates cisplatin chemosensitivity through CEBPA/BCL2-mediated cell apoptosis. Knockdown of CEBPA and BCL2 could alleviate the increasement of cisplatin resistance induced by CEBPA-DT overexpression. Our findings indicate that downregulation of lncRNA CEBPA-DT may be a potential therapy to overcome cisplatin resistance in OSCC.


Assuntos
Carcinoma de Células Escamosas , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Bucais , RNA Longo não Codificante/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Transdução de Sinais/genética
4.
Transl Oncol ; 31: 101644, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36827716

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is the most prevalent malignant tumor in head and neck region. Platinum drug resistance limits the clinical application of chemotherapy regardless of medical development. The aim of our study is to identify cisplatin-resistant genes which can be used as new therapeutic targets and investigate the functional mechanism of OSCC chemoresistance. METHODS: The OSCC Cal27 and HSC4 cisplatin-resistant cell lines were constructed to screen the differential genes/transcripts expression. GO, KEGG and GSEA were performed to reveal the relevant signaling pathways. Alternative splicing (AS) software rMATs was applied to explore AS events in chemoresistance. R package and TIMER tools were used to evaluate the linear correlation between CD44 and immune cell subpopulations. The co-culture model of dendritic cells (DCs) and OSCC cells was applied to explore the effect of CD44 on immune microenvironment and cisplatin resistance. RESULTS: Our results showed that CD44 was differentially expressed in cisplatin-resistant OSCC cells. Through bioinformatics prediction and experimental verification, we confirmed that CD44 occurring AS was involved in tumor progression and cisplatin resistance. Moreover, CD44 could further enhance the cisplatin resistance of OSCC by activating DCs, making CD44 to be a potential intervention target. We also identified DC as a new target for platinum drugs to stimulate the growth of OSCC. CONCLUSION: Our findings not only make it possible to explore new therapeutic methods, such as CD44 inhibitors or antisense oligonucleotides, but also provide insights into the new mechanisms of cisplatin resistance to chemotherapy.

5.
Pathol Oncol Res ; 26(2): 1007-1013, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30949866

RESUMO

Oral squamous cell carcinoma (OSCC) characterized with invasive growth, local metastasis and later stage diagnosis was a common malignancy in head and neck region. The aim of this study was to explore the relationship between miR-182-5p and OSCC, which will contribute to find potential biomarker for OSCC metastasis. MiR-182-5p expression level was detected by the quantitative real-time PCR (qRT-PCR). Cell migration and invasion ability were examined by scratch and transwell assay. Loss-of function together with luciferase reporter assay were used to verify the miR-182-5p modulated OSCC cells migration and metastasis was mediated by MTSS1. The expression of MTSS1 protein was examined by western blotting. MiR-182-5p up-regulated in OSCC, was involved in the migration and invasion of OSCC and the increased miR-182-5p expression was correlated with lower OSCC differentiation grade, higher T and N stage. Bioinformatics analysis predicted MTSS1 gene was a potential target of miR-182-5p. Following co-transfection, qRT-PCR, luciferase activities assay and western blotting confirmed that MTSS1 gene was a direct target of miR-182-5p and silence of MTSS1 could reverse the effects of miR-182-5p on OSCC migration and invasion. MiR-182-5p was up-regulated in OSCC and the ability of miR-182-5p to promote MTSS1 repression may precipitate in the OSCC through bypassing cell migration and invasion control.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/patologia , MicroRNAs/genética , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Adulto , Movimento Celular/genética , Feminino , Neoplasias de Cabeça e Pescoço/genética , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
6.
Cancer Manag Res ; 10: 4371-4380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349370

RESUMO

BACKGROUND: Urothelial bladder cancer (UBC) is one of the most lethal urological malignancies in the world. Patients with UBC are routinely given chemotherapy which results in a median survival of 12-15 months. Nuclear-enriched abundant transcript 1 (NEAT1) functions as an oncogene and could be used as a therapeutic target for human UBC. However, the involvement of NEAT1 in doxorubicin (DOX) resistance of UBC has been poorly demonstrated. METHODS: Quantitative Real-time PCR (qRT-PCR) was used to detect the expression levels of NEAT1 and miR-214-3p in UBC tissues and cells. Bioinformatics prediction, RNA pull-down and qRT-PCR were used to assay the regulation manner of NEAT1 and miR-214-3p. Loss/gain function of NEAT1 and miR-214-3p together with western blot, drug resistance assay and flow cytometry were used to explore the influence of NEAT1 in DOX resistance was correlative with miR-214-3p. Finally, luciferase assay system was applied to determine the Wnt/ß-catenin signal activity. RESULTS: NEAT1 was upregulated and miR-214-3p was downregulated in DOX-resistant UBC tissues and cells. NEAT1 knockdown inhibited J82 and T24 cells to DOX chemosensitivity by negatively regulating miR-214-3p expression. NEAT1/miR-214-3p contributed to DOX resistance of UBC preliminary through the Wnt/ß-catenin pathway. CONCLUSION: NEAT1 contributed to DOX resistance of UBC through the Wnt/ß-catenin pathway partly by negatively regulating miR-214-3p expression. Our findings will provide a promising ncRNA targeted therapeutic strategy for UBC with DOX resistance.

7.
Cancer Biol Ther ; 19(3): 205-213, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29281558

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most aggressive and lethal malignancies affecting the head and neck region with a general 5-year survival rate about 50%. Long non-coding RNAs (lncRNAs) are believed to participate in diverse biological processes and are emerging as convenient and minimally invasive diagnostic/prognostic/therapeutic markers. The aim of this study was to explore CEBPA-AS1 role and mechanism in OSCC tumorigenesis. In this study, CEBPA-AS1 localized in the cytoplasm and the peri-nuclear cellular compartment functioning as a potential oncogene up-regulated in OSCC was correlated with poor differentiation, lymph node metastasis and high clinical stage, which made it considered to be a prognostic biomarker. Silence of CEBPA-AS1 inhibited OSCC cells proliferation and induced cells apoptosis, migration and invasion by targeting CEBPA and via a novel pathway CEBPA/Bcl2. Our findings provided the first evidence for the lncRNA CEBPA-AS1 regulatory network in OSCC tumorigenesis, which might be helpful to improve the effects of clinical treatment in OSCC.


Assuntos
Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Apoptose/genética , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Citoplasma/genética , Citoplasma/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/citologia , Mucosa Bucal/patologia , Neoplasias Bucais/mortalidade , Neoplasias Bucais/patologia , Estadiamento de Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA