Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Circulation ; 139(7): 901-914, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30586741

RESUMO

BACKGROUND: Mitsugumin 53 (MG53 or TRIM72), a striated muscle-specific E3 ligase, promotes ubiquitin-dependent degradation of the insulin receptor and insulin receptor substrate-1 and subsequently induces insulin resistance, resulting in metabolic syndrome and type 2 diabetes mellitus (T2DM). However, it is unknown how MG53 from muscle regulates systemic insulin response and energy metabolism. Increasing evidence demonstrates that muscle secretes proteins as myokines or cardiokines that regulate systemic metabolic processes. We hypothesize that MG53 may act as a myokine/cardiokine, contributing to interorgan regulation of insulin sensitivity and metabolic homeostasis. METHODS: Using perfused rodent hearts or skeletal muscle, we investigated whether high glucose, high insulin, or their combination (conditions mimicking metabolic syndrome or T2DM) alters MG53 protein concentration in the perfusate. We also measured serum MG53 levels in rodents and humans in the presence or absence of metabolic diseases, particularly T2DM. The effects of circulating MG53 on multiorgan insulin response were evaluated by systemic delivery of recombinant MG53 protein to mice. Furthermore, the potential involvement of circulating MG53 in the pathogenesis of T2DM was assessed by neutralizing blood MG53 with monoclonal antibodies in diabetic db/db mice. Finally, to delineate the mechanism underlying the action of extracellular MG53 on insulin signaling, we analyzed the potential interaction of MG53 with extracellular domain of insulin receptor using coimmunoprecipitation and surface plasmon resonance assays. RESULTS: Here, we demonstrate that MG53 is a glucose-sensitive myokine/cardiokine that governs the interorgan regulation of insulin sensitivity. First, high glucose or high insulin induces MG53 secretion from isolated rodent hearts and skeletal muscle. Second, hyperglycemia is accompanied by increased circulating MG53 in humans and rodents with diabetes mellitus. Third, systemic delivery of recombinant MG53 or cardiac-specific overexpression of MG53 causes systemic insulin resistance and metabolic syndrome in mice, whereas neutralizing circulating MG53 with monoclonal antibodies has therapeutic effects in T2DM db/db mice. Mechanistically, MG53 binds to the extracellular domain of the insulin receptor and acts as an allosteric blocker. CONCLUSIONS: Thus, MG53 has dual actions as a myokine/cardiokine and an E3 ligase, synergistically inhibiting the insulin signaling pathway. Targeting circulating MG53 opens a new therapeutic avenue for T2DM and its complications.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus/sangue , Metabolismo Energético , Resistência à Insulina , Proteínas de Membrana/metabolismo , Adulto , Animais , Anticorpos Monoclonais/farmacologia , Antígenos CD/metabolismo , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Estudos de Casos e Controles , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/enzimologia , Diabetes Mellitus/imunologia , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Feminino , Células HEK293 , Homeostase , Humanos , Hipoglicemiantes/farmacologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Ratos Sprague-Dawley , Ratos Zucker , Receptor de Insulina/metabolismo , Transdução de Sinais , Proteínas com Motivo Tripartido/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
Nature ; 494(7437): 375-9, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23354051

RESUMO

Insulin resistance is a fundamental pathogenic factor present in various metabolic disorders including obesity and type 2 diabetes. Although skeletal muscle accounts for 70-90% of insulin-stimulated glucose disposal, the mechanism underlying muscle insulin resistance is poorly understood. Here we show in mice that muscle-specific mitsugumin 53 (MG53; also called TRIM72) mediates the degradation of the insulin receptor and insulin receptor substrate 1 (IRS1), and when upregulated, causes metabolic syndrome featuring insulin resistance, obesity, hypertension and dyslipidaemia. MG53 expression is markedly elevated in models of insulin resistance, and MG53 overexpression suffices to trigger muscle insulin resistance and metabolic syndrome sequentially. Conversely, ablation of MG53 prevents diet-induced metabolic syndrome by preserving the insulin receptor, IRS1 and insulin signalling integrity. Mechanistically, MG53 acts as an E3 ligase targeting the insulin receptor and IRS1 for ubiquitin-dependent degradation, comprising a central mechanism controlling insulin signal strength in skeletal muscle. These findings define MG53 as a novel therapeutic target for treating metabolic disorders and associated cardiovascular complications.


Assuntos
Proteínas de Transporte/metabolismo , Resistência à Insulina/fisiologia , Insulina , Síndrome Metabólica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Dislipidemias/metabolismo , Deleção de Genes , Hipertensão/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Proteínas de Membrana , Síndrome Metabólica/enzimologia , Síndrome Metabólica/genética , Síndrome Metabólica/prevenção & controle , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor de Insulina/metabolismo , Transdução de Sinais , Ubiquitinação
3.
Circulation ; 131(9): 795-804, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25637627

RESUMO

BACKGROUND: Diabetic cardiomyopathy, which contributes to >50% diabetic death, is featured by myocardial lipid accumulation, hypertrophy, fibrosis, and cardiac dysfunction. The mechanism underlying diabetic cardiomyopathy is poorly understood. Recent studies have shown that a striated muscle-specific E3 ligase Mitsugumin 53 (MG53, or TRIM72) constitutes a primary causal factor of systemic insulin resistance and metabolic disorders. Although it is most abundantly expressed in myocardium, the biological and pathological roles of MG53 in triggering cardiac metabolic disorders remain elusive. METHODS AND RESULTS: Here we show that cardiac-specific transgenic expression of MG53 induces diabetic cardiomyopathy in mice. Specifically, MG53 transgenic mouse develops severe diabetic cardiomyopathy at 20 weeks of age, as manifested by insulin resistance, compromised glucose uptake, increased lipid accumulation, myocardial hypertrophy, fibrosis, and cardiac dysfunction. Overexpression of MG53 leads to insulin resistant via destabilizing insulin receptor and insulin receptor substrate 1. More importantly, we identified a novel role of MG53 in transcriptional upregulation of peroxisome proliferation-activated receptor alpha and its target genes, resulting in lipid accumulation and lipid toxicity, thereby contributing to diabetic cardiomyopathy. CONCLUSIONS: Our results suggest that overexpression of myocardial MG53 is sufficient to induce diabetic cardiomyopathy via dual mechanisms involving upregulation of peroxisome proliferation-activated receptor alpha and impairment of insulin signaling. These findings not only reveal a novel function of MG53 in regulating cardiac peroxisome proliferation-activated receptor alpha gene expression and lipid metabolism, but also underscore MG53 as an important therapeutic target for diabetes mellitus and associated cardiomyopathy.


Assuntos
Proteínas de Transporte/fisiologia , Cardiomiopatias Diabéticas/genética , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , PPAR alfa/fisiologia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Genes Sintéticos , Proteínas Substratos do Receptor de Insulina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , PPAR alfa/biossíntese , PPAR alfa/genética , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica , Regulação para Cima
4.
Circ Res ; 106(2): 317-27, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19926875

RESUMO

RATIONALE: Rad (Ras associated with diabetes) GTPase, a monomeric small G protein, binds to Ca(v)beta subunit of the L-type Ca(2+) channel (LCC) and thereby regulates LCC trafficking and activity. Emerging evidence suggests that Rad is an important player in cardiac arrhythmogenesis and hypertrophic remodeling. However, whether and how Rad involves in the regulation of excitation-contraction (EC) coupling is unknown. OBJECTIVE: This study aimed to investigate possible role of Rad in cardiac EC coupling and beta-adrenergic receptor (betaAR) inotropic mechanism. METHODS AND RESULTS: Adenoviral overexpression of Rad by 3-fold in rat cardiomyocytes suppressed LCC current (I(Ca)), [Ca(2+)](i) transients, and contractility by 60%, 42%, and 38%, respectively, whereas the "gain" function of EC coupling was significantly increased, due perhaps to reduced "redundancy" of LCC in triggering sarcoplasmic reticulum release. Conversely, approximately 70% Rad knockdown by RNA interference increased I(Ca) (50%), [Ca(2+)](i) transients (52%) and contractility (58%) without altering EC coupling efficiency; and the dominant negative mutant RadS105N exerted a similar effect on I(Ca). Rad upregulation caused depolarizing shift of LCC activation and hastened time-dependent LCC inactivation; Rad downregulation, however, failed to alter these attributes. The Na(+)/Ca(2+) exchange activity, sarcoplasmic reticulum Ca(2+) content, properties of Ca(2+) sparks and propensity for Ca(2+) waves all remained unperturbed regardless of Rad manipulation. Rad overexpression, but not knockdown, negated betaAR effects on I(Ca) and Ca(2+) transients. CONCLUSION: These results establish Rad as a novel endogenous regulator of cardiac EC coupling and betaAR signaling and support a parsimonious model in which Rad buffers Ca(v)beta to modulate LCC activity, EC coupling, and betaAR responsiveness.


Assuntos
Miócitos Cardíacos/fisiologia , Receptores Adrenérgicos beta/fisiologia , Transdução de Sinais , Proteínas ras/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Western Blotting , Cálcio/metabolismo , Células Cultivadas , Proteínas de Homeodomínio/metabolismo , Isoproterenol/farmacologia , Potenciais da Membrana , Contração Miocárdica , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Proteínas ras/genética
5.
Circulation ; 121(23): 2565-74, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20516375

RESUMO

BACKGROUND: Ischemic heart disease is the greatest cause of death in Western countries. The deleterious effects of cardiac ischemia are ameliorated by ischemic preconditioning (IPC), in which transient ischemia protects against subsequent severe ischemia/reperfusion injury. IPC activates multiple signaling pathways, including the reperfusion injury salvage kinase pathway (mainly PI3K-Akt-glycogen synthase kinase-3beta [GSK3beta] and ERK1/2) and the survivor activating factor enhancement pathway involving activation of the JAK-STAT3 axis. Nevertheless, the fundamental mechanism underlying IPC is poorly understood. METHODS AND RESULTS: In the present study, we define MG53, a muscle-specific TRIM-family protein, as a crucial component of cardiac IPC machinery. Ischemia/reperfusion or hypoxia/oxidative stress applied to perfused mouse hearts or neonatal rat cardiomyocytes, respectively, causes downregulation of MG53, and IPC can prevent ischemia/reperfusion-induced decrease in MG53 expression. MG53 deficiency increases myocardial vulnerability to ischemia/reperfusion injury and abolishes IPC protection. Overexpression of MG53 attenuates whereas knockdown of MG53 enhances hypoxia- and H(2)O(2)-induced cardiomyocyte death. The cardiac protective effects of MG53 are attributable to MG53-dependent interaction of caveolin-3 with phosphatidylinositol 3 kinase and subsequent activation of the reperfusion injury salvage kinase pathway without altering the survivor activating factor enhancement pathway. CONCLUSIONS: These results establish MG53 as a primary component of the cardiac IPC response, thus identifying a potentially important novel therapeutic target for the treatment of ischemic heart disease.


Assuntos
Proteínas de Transporte/biossíntese , Precondicionamento Isquêmico Miocárdico/métodos , Proteínas Musculares/biossíntese , Miocárdio/metabolismo , Proteínas de Transporte Vesicular/biossíntese , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Técnicas In Vitro , Masculino , Proteínas de Membrana , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/fisiologia , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiologia
6.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523865

RESUMO

Cytokines are extracellular proteins that convey messages between cells by interacting with cognate receptors at the cell surface and triggering signaling pathways that alter gene expression and other phenotypes in an autocrine or paracrine manner. Here, we show that the calcium-dependent cytokines S100A8 and S100A9 are recruited to numerous promoters and enhancers in a model of breast cellular transformation. This recruitment is associated with multiple DNA sequence motifs recognized by DNA binding transcription factors that are linked to transcriptional activation and are important for transformation. The cytokines interact with these transcription factors in nuclear extracts, and they activate transcription when artificially recruited to a target promoter. Nuclear-specific expression of S100A8/A9 promotes oncogenic transcription and leads to enhanced breast transformation phenotype. These results suggest that, in addition to its classical cytokine function, S100A8/A9 can act as a transcriptional coactivator.


Assuntos
Mama , Calgranulina A , Calgranulina B , Transformação Celular Neoplásica , Mama/patologia , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Citocinas/metabolismo , Humanos , Fatores de Transcrição/metabolismo
7.
Nat Biotechnol ; 34(4): 410-3, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26900662

RESUMO

Ribosome profiling is widely used to study translation in vivo, but not all sequence reads correspond to ribosome-protected RNA. Here we describe Rfoot, a computational pipeline that analyzes ribosomal profiling data and identifies native, nonribosomal RNA-protein complexes. We use Rfoot to precisely map RNase-protected regions within small nucleolar RNAs, spliceosomal RNAs, microRNAs, tRNAs, long noncoding (lnc)RNAs and 3' untranslated regions of mRNAs in human cells. We show that RNAs of the same class can show differential complex association. Although only a subset of lncRNAs show RNase footprints, many of these have multiple footprints, and the protected regions are evolutionarily conserved, suggestive of biological functions.


Assuntos
Biologia Computacional/métodos , Proteínas de Ligação a RNA/química , RNA/química , Ribonucleases/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Linhagem Celular Tumoral , Humanos , RNA/análise
8.
Elife ; 4: e08890, 2015 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-26687005

RESUMO

Using a new bioinformatic method to analyze ribosome profiling data, we show that 40% of lncRNAs and pseudogene RNAs expressed in human cells are translated. In addition, ~35% of mRNA coding genes are translated upstream of the primary protein-coding region (uORFs) and 4% are translated downstream (dORFs). Translated lncRNAs preferentially localize in the cytoplasm, whereas untranslated lncRNAs preferentially localize in the nucleus. The translation efficiency of cytoplasmic lncRNAs is nearly comparable to that of mRNAs, suggesting that cytoplasmic lncRNAs are engaged by the ribosome and translated. While most peptides generated from lncRNAs may be highly unstable byproducts without function, ~9% of the peptides are conserved in ORFs in mouse transcripts, as are 74% of pseudogene peptides, 24% of uORF peptides and 32% of dORF peptides. Analyses of synonymous and nonsynonymous substitution rates of these conserved peptides show that some are under stabilizing selection, suggesting potential functional importance.


Assuntos
Regiões 5' não Traduzidas , Expressão Gênica , Biossíntese de Proteínas , Proteínas/genética , Pseudogenes , RNA Longo não Codificante , Animais , Sequência Conservada , Humanos , Camundongos
9.
Sci Rep ; 4: 4710, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24736571

RESUMO

Phytoliths, the amorphous silica deposited in plant tissues, can occlude organic carbon (phytolith-occluded carbon, PhytOC) during their formation and play a significant role in the global carbon balance. This study explored phylogenetic variation of phytolith carbon sequestration in bamboos. The phytolith content in bamboo varied substantially from 4.28% to 16.42%, with the highest content in Sasa and the lowest in Chimonobambusa, Indocalamus and Acidosasa. The mean PhytOC production flux and rate in China's bamboo forests were 62.83 kg CO2 ha(-1) y(-1) and 4.5 × 10(8)kg CO2 y(-1), respectively. This implies that 1.4 × 10(9) kg CO2 would be sequestered in world's bamboo phytoliths because the global bamboo distribution area is about three to four times higher than China's bamboo. Therefore, both increasing the bamboo area and selecting high phytolith-content bamboo species would increase the sequestration of atmospheric CO2 within bamboo phytoliths.


Assuntos
Carbono/metabolismo , Filogenia , Poaceae/metabolismo , Carbono/análise , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Folhas de Planta/metabolismo , Poaceae/classificação , Dióxido de Silício/química , Dióxido de Silício/metabolismo
11.
Cardiovasc Res ; 91(1): 108-15, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21285295

RESUMO

AIMS: Recent studies show that ischaemic postconditioning (PostC), similar to the well-established ischaemic preconditioning (IPC), confers cardioprotection against ischaemia/reperfusion (IR) injury, and both IPC and PostC can activate the reperfusion injury salvage kinase (RISK) pathway and the survivor activating factor enhancement (SAFE) pathway. PostC is clinically more attractive because of its therapeutic application at the predictable onset of reperfusion. Our previous studies have demonstrated that MG53 is a primary component of the IPC machinery. Here, we investigated the potential role of MG53 in PostC-mediated myocardial protection and explored the underlying mechanism. METHODS AND RESULTS: Using Langendorff perfusion, we investigated IR injury in wild-type (wt) and MG53-deficient (mg53(-/-)) mouse hearts with or without PostC. IR-induced myocardial damage was markedly exacerbated in mg53(-/-) hearts compared with wt controls. PostC protected wt hearts against IR-induced myocardial infarction, myocyte necrosis, and apoptosis, but failed to protect mg53(-/-) hearts. The loss of PostC protection in mg53(-/-) hearts was attributed to selectively impaired PostC-activated RISK signalling. Mechanistically, MG53 is required for the interaction between caveolin 3 (CaV3) and the p85 subunit of phosphoinositide 3-kinase (p85-PI3K) and PostC-mediated activation of the RISK pathway. Importantly, a structure-function study revealed that the MG53 tripartite motif (TRIM) domain (aa1-284) physically interacted with CaV3 but not p85-PI3K, whereas the MG53 SPRY domain (aa285-477) interacted with p85-PI3K but not CaV3, indicating that MG53 binds to CaV3 and p85 at its N- and C-terminus, respectively. CONCLUSIONS: We conclude that MG53 participates in PostC-mediated cardioprotection largely through tethering CaV3 and PI3K and subsequent activation of the RISK pathway.


Assuntos
Proteínas de Transporte/metabolismo , Pós-Condicionamento Isquêmico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Análise de Variância , Animais , Apoptose , Sítios de Ligação , Proteínas de Transporte/genética , Caveolina 3/genética , Caveolina 3/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Proteínas de Membrana , Camundongos , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Necrose , Perfusão , Fosfatidilinositol 3-Quinase/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Quinases/genética , Subunidades Proteicas , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA