Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(1): 102771, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470424

RESUMO

An emerging body of research is revealing mutations in elongation factor eEF2 that are implicated in both inherited and de novo neurodevelopmental disorders. Previous structural analysis has revealed that most pathogenic amino acid substitutions map to the three main points of contact between eEF2 and critical large subunit rRNA elements of the ribosome, specifically to contacts with Helix 69, Helix 95, also known as the sarcin-ricin loop, and Helix 43 of the GTPase-associated center. In order to further investigate these eEF2-ribosome interactions, we identified a series of yeast eEF2 amino acid residues based on their proximity to these functionally important rRNA elements. Based on this analysis, we constructed mutant strains to sample the full range of amino acid sidechain biochemical properties, including acidic, basic, nonpolar, and deletion (alanine) residues. These were characterized with regard to their effects on cell growth, sensitivity to ribosome-targeting antibiotics, and translational fidelity. We also biophysically characterized one mutant from each of the three main points of contact with the ribosome using CD. Collectively, our findings from these studies identified functionally critical contacts between eEF2 and the ribosome. The library of eEF2 mutants generated in this study may serve as an important resource for biophysical studies of eEF2/ribosome interactions going forward.


Assuntos
Fator 2 de Elongação de Peptídeos , Ribossomos , Humanos , Aminoácidos/química , Aminoácidos/genética , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutação
2.
Hum Brain Mapp ; 44(18): 6326-6348, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909393

RESUMO

A major interest in longitudinal neuroimaging studies involves investigating voxel-level neuroplasticity due to treatment and other factors across visits. However, traditional voxel-wise methods are beset with several pitfalls, which can compromise the accuracy of these approaches. We propose a novel Bayesian tensor response regression approach for longitudinal imaging data, which pools information across spatially distributed voxels to infer significant changes while adjusting for covariates. The proposed method, which is implemented using Markov chain Monte Carlo (MCMC) sampling, utilizes low-rank decomposition to reduce dimensionality and preserve spatial configurations of voxels when estimating coefficients. It also enables feature selection via joint credible regions which respect the shape of the posterior distributions for more accurate inference. In addition to group level inferences, the method is able to infer individual-level neuroplasticity, allowing for examination of personalized disease or recovery trajectories. The advantages of the proposed approach in terms of prediction and feature selection over voxel-wise regression are highlighted via extensive simulation studies. Subsequently, we apply the approach to a longitudinal Aphasia dataset consisting of task functional MRI images from a group of subjects who were administered either a control intervention or intention treatment at baseline and were followed up over subsequent visits. Our analysis revealed that while the control therapy showed long-term increases in brain activity, the intention treatment produced predominantly short-term changes, both of which were concentrated in distinct localized regions. In contrast, the voxel-wise regression failed to detect any significant neuroplasticity after multiplicity adjustments, which is biologically implausible and implies lack of power.


Assuntos
Neuroimagem , Plasticidade Neuronal , Humanos , Teorema de Bayes , Simulação por Computador , Método de Monte Carlo
3.
Behav Brain Res ; 452: 114575, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37423319

RESUMO

With the diversity in aphasia coupled with diminished gains at the chronic phase, it is imperative to deliver effective rehabilitation plans. Treatment outcomes have therefore been predicted using lesion-to-symptom mapping, but this method lacks holistic functional information about the language-network. This study, therefore, aims to develop whole-brain task-fMRI multivariate analysis to neurobiologically inspect lesion impacts on the language-network and predict behavioral outcomes in persons with aphasia (PWA) undergoing language therapy. In 14 chronic PWA, semantic fluency task-fMRI and behavioral measures were collected to develop prediction methodologies for post-treatment outcomes. Then, a recently developed imaging-based multivariate method to predict behavior (i.e., LESYMAP) was optimized to intake whole-brain task-fMRI data, and systematically tested for reliability with mass univariate methods. We also accounted for lesion size in both methods. Results showed that both mass univariate and multivariate methods identified unique biomarkers for semantic fluency improvements from baseline to 2-weeks post-treatment. Additionally, both methods demonstrated reliable spatial overlap in task-specific areas including the right middle frontal gyrus when identifying biomarkers of language discourse. Thus whole-brain task-fMRI multivariate analysis has the potential to identify functionally meaningful prognostic biomarkers even for relatively small sample sizes. In sum, our task-fMRI based multivariate approach holistically estimates post-treatment response for both word and sentence production and may serve as a complementary tool to mass univariate analysis in developing brain-behavior relationships for improved personalization of aphasia rehabilitation regimens.


Assuntos
Afasia , Acidente Vascular Cerebral , Humanos , Imageamento por Ressonância Magnética/métodos , Prognóstico , Reprodutibilidade dos Testes , Afasia/diagnóstico por imagem , Afasia/terapia , Encéfalo , Mapeamento Encefálico
4.
Front Physiol ; 14: 1240992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546533

RESUMO

Introduction: Response to post-stroke aphasia language rehabilitation is difficult to anticipate, mainly because few predictors can help identify optimal, individualized treatment options. Imaging techniques, such as Voxel-based Lesion Symptom Mapping have been useful in linking specific brain areas to language behavior; however, further development is required to optimize the use of structural and physiological information in guiding individualized treatment for persons with aphasia (PWA). In this study, we will determine if cerebral blood flow (CBF) mapped in patients with chronic strokes can be further used to understand stroke-related factors and behavior. Methods: We collected perfusion MRI data using pseudo-Continuous Arterial Spin Labeling (pCASL) using a single post-labeling delay of 2,200 ms in 14 chronic PWA, along with high-resolution structural MRI to compute maps of tissue damage using Tissue Integrity Gradation via T2w T1w Ratio (TIGR). To quantify the CBF in chronic stroke lesions, we tested at what point spatial smoothing should be applied in the ASL analysis pipeline. We then related CBF to tissue damage, time since stroke, age, sex, and their respective cross-terms to further understand the variability in lesion CBF. Finally, we assessed the feasibility of computing multivariate brain-behavior maps using CBF and compared them to brain-behavior maps extracted with TIGR MRI. Results: We found that the CBF in chronic stroke lesions is significantly reduced compared to its homologue grey and white matter regions. However, a reliable CBF signal (although smaller than expected) was detected to reveal a negative relationship between CBF and increasing tissue damage. Further, the relationship between the lesion CBF and age, sex, time since stroke, and tissue damage and cross-terms suggested an aging-by-disease interaction. This relationship was strongest when smoothing was applied in the template space. Finally, we show that whole-brain CBF relates to domain-general visuospatial functioning in PWA. The CBF-based brain-behavior maps provide unique and complementary information to structural (lesion-based) brain-behavior maps. Discussion: Therefore, CBF can be detected in chronic stroke lesions using a standard pCASL MRI acquisition and is informative at the whole-brain level in identifying stroke rehabilitation targets in PWAs due to its relationship with demographic factors, stroke-related factors, and behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA