Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Phys Chem Chem Phys ; 26(14): 11064-11072, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529570

RESUMO

Intramolecular charge transfer (ICT) and π-electron delocalization are two key factors affecting the nonlinear optical absorption of organic molecules. To clarify the different influences of ICT and π-electron delocalization on two-photon absorption (TPA) and excited-state absorption (ESA), monomeric coumarin C1 and dimeric coumarin C2 are synthesized and studied. Transient absorption spectroscopy (TAS) analysis of these coumarin derivatives in solvents of varying polarities describes the polarity-dependent excited-state dynamics and reveals the ESA signals of the charge transfer state (CTS) and local excited state (LES) with different spectral features. Femtosecond broadband Z-scan experiments indicate that dimeric coumarin C2 has a more significant TPA response than monomeric coumarin C1 in the near-infrared region. Natural transition orbital (NTO) analysis further theoretically characterizes the electron transition feature induced by TPA. Our results reveal that the TPA of these coumarin derivatives can be significantly enhanced by expanding π-electron delocalization, but their ESA is mainly dominated by ICT performance. This study indicates that coumarin derivatives will exhibit extremely broad application prospects in the field of ultrafast optical limiting (OL) through reasonable molecular design.

2.
Opt Express ; 31(4): 6252-6261, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823886

RESUMO

Phase (composition) is known to play a key role in determining the electronic and optical properties of amorphous oxide semiconductors. In this work, modulating the ultrafast nonlinear optical (NLO) response of SnO2 and SnO thin films by tuning oxygen partial pressure during film sputtering is explored. Femtosecond Z-scan results demonstrate that intermediate phases have no profound impact on the two-photon absorption (TPA) response of SnO2 and SnO films. Interestingly, the magnitude of the effective nonlinear absorption coefficient (ßeff) of both intermediate SnO2-x and SnOx are enhanced after the change of Sn2+/Sn4+ composition ratio, as measured by picosecond Z-scan technique. Femtosecond degenerate pump-probe measurements show that intermediate phases accelerate the carrier trapping and improve the defect-related carrier absorption in SnOx (SnO-rich) film, while intermediate phase suppress the TPA response of SnO2-x (SnO2-rich) films, therefore carrier-induced absorption dominates the NLO behavior of SnO2-x film on picosecond regime. Our results indicate a simple and effective way to modulate the NLO response of transparent conductive oxide SnO2 and SnO.

3.
Opt Express ; 31(20): 32263-32272, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859033

RESUMO

GaN is a one of promising materials for nonlinear optical applications. In this work, the broadband nonlinear optical response and potential applications for all-optical switching (AOS) are evaluated in low-defect GaN. In the pump-probe experiments, the ultrafast optical switching times are consistent with pulse widths accompanied with relative weak free-carrier absorption response, and the modulation contrast can reach ∼60% by varying the polarization orientations between the pump and probe lights. In the visible region, the broadband two-photon absorption effect exhibits excellent values for the imaginary part of figure of merit (FOM), providing the possibility of AOS based on nonlinear absorption (magnitude). While in the near-infrared region and under the presence of three-photon absorption, not only the real part of FOM based on Kerr effect is evaluated, but also the maximum light intensity for the usage of AOS based on nonlinear refraction (phase) is determined. The broadband nonlinear optical and AOS features in low-defect GaN will be highly favorable for the applications in the field of integrated nonlinear photonics and photonic circuits.

4.
Molecules ; 28(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37375247

RESUMO

Broadband reverse saturable absorption is systematically investigated via Z-scan, transient absorption spectrum (TAS). The excited state absorption and negative refraction of Orange IV are observed in the Z-scan experiment at 532 nm. Meanwhile, two-photon-induced excited state absorption and pure two-photon absorption are observed at 600 nm and 700 nm with the pulse width of 190 fs, respectively. An ultrafast broadband absorption in the visible wavelength region is observed via TAS. The different nonlinear absorption mechanisms at multiple wavelengths are discussed and interpreted from the results of TAS. In addition, the ultrafast dynamics of negative refraction in the excited state of Orange IV are investigated via a degenerate phase object pump-probe, from which the weak long-lived excited state is extracted. All studies indicate that Orange IV has the potential to be further optimized into a superior broadband reverse saturable absorption material and also has certain reference significance for the study of optical nonlinearity in organic molecules containing azobenzene groups.

5.
Opt Express ; 30(7): 11549-11562, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473097

RESUMO

Hyperbolic metamaterials (HMMs) exhibit rich optical nonlinear responses for the epsilon-near-zero (ENZ) and anisotropy. In this study, we extract the time-dependent change in the effective permittivity of an Ag nanorod array under femtosecond pulses pumping around its ENZ wavelength. The transmittance and transient absorption spectra measured by s- and p-polarizations are used in the extraction process. We experimentally confirm the existence of an ultrafast recovery process with a relaxation time of 0.24 ps in the transient absorption spectra. The calculation based on the extracted nonlinear effective permittivity indicates that the ultrafast signal originates from the superposition of two slower recovery processes, with relaxation times of 0.74 ps and 1.19 ps, respectively. The results indicate that when the responses of two nonlinear processes have different signs and recovery speeds, their superposition may cause faster signal recovery in the combined process than in the two individual processes.

6.
Opt Express ; 30(26): 47485-47496, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558676

RESUMO

The process and condition of saturable absorption (SA) and reverse saturable absorption (RSA) of ultrafast nonlinear optics in metal nanoparticles are essential for applications including light generation, amplification, modulation, and switching. Here, we first discover and explore the multiple transformations (SA-RSA-SA) of ultrafast nonlinear absorption behavior of metal nanoparticles in femtosecond pulses. Correspondingly, the energy level model and fitting formula of multiple transformations are established to illustrate the process of optical response. The femtosecond transient absorption spectra provide information about their ultrafast dynamics process and vibrational mode, which further reveals the multiple transformation mechanisms of nonlinear absorption in gold nanobipyramids (Au-NBPs). Furthermore, Au-NBPs exhibit a significantly higher SA modulation depth up to 42% in the femtosecond, which is much higher than the reported values of other nanomaterials. Our results indicate that Au-NBPs can be used as broadband ultrafast Q-switching and mode-locking, and the conversion offers new opportunities for metal nanostructures in applications of optical switching.

7.
Opt Express ; 30(7): 10354-10366, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473005

RESUMO

We first present the all-optical realization of a scalable super-resolved magnetic vortex core (MVC) by tightly focusing two modulated counter-propagating radially polarized doughnut Gaussian beams based on the vectoial diffraction theory and the inverse Faraday effect. It is shown that by imposing spiral phase plates (SPPs) on the incident vectorial beams, single three-dimensional (3D) super-resolved (λ3/22) MVC can be achieved in the 4π focusing setup, which is radically different from that produced with a single lens focusing. Furthermore, the light-induced MVC texture turns to be richer and more complex when the radially polarized beams are tailored by the SPPs and judiciously designed multi-ring filters all together. In this case, we are able to garner not only transverse super-resolved (0.447λ) MVC needle with an uniformly extended area (40λ) in the single lens focusing system, but also the multiple uniform 3D super-resolved (λ3/24) chain-like MVC cells in the 4π focusing system, thus giving rise to the tunable and scalable super-resolved MVC extension. The related physical mechanisms to trigger such peculiar magnetization polarization topologies are unraveled as well. These resultant achievements would pave the way for the integrated transfer and storage of optomagnetic information, atomic trapping, and beyond.

8.
Phys Chem Chem Phys ; 24(2): 955-965, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918731

RESUMO

Intramolecular charge transfer (ICT) is an important factor in the nonlinear optical (NLO) properties of organic molecules. In order to study the effect of ICT on two-photon absorption (TPA) and excited-state absorption (ESA), three chalcone derivatives (1, 2 and 3) with different electron push-pull systems were designed and synthesized. The ICT performance of these chalcone derivatives depends on the electron push-pull systems and mainly includes ultrafast ICT in the femtosecond time domain and long-lived charge transfer state (CTS) in the picosecond time domain, which dominate the performance of molecular TPA and ESA respectively. Hole-electron analysis and femtosecond Z-scan experiment indicate that the TPA cross section of these chalcone derivatives can be effectively enhanced by introducing stronger ultra-fast ICT in the case of little difference in ground-state absorption and expanding the molecular π-conjugated structure. Transient absorption spectrum (TAS) experiments of these compounds in solvents of varying polarities were conducted to visualize the establishment of CTS. The local excited state (LES) and charge transfer state (CTS)-based ESA of these chalcone derivatives are extremely dependent on the strength of ICT. Our experimental results show that the superposition of LES and CTS by enhancing ICT performance can effectively improve the ESA, which offers us a practical method to improve the long-impulse response of organic materials.

9.
Molecules ; 27(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684501

RESUMO

A novel two-branched twistacene (PyDN) has been designed and synthesized for application on ultrafast optical limiting. This twistacene exhibits excellent two photon absorption and two photon absorption-induced excited singlet state absorption, which was systematically investigated with a femtosecond Z-scan experiment, transient absorption spectrum, and two-photon excited fluorescence experiments. The admirable two photon absorption is attributed to the high degree of π electron delocalization in twistacene which is caused by introduction of two strong donors. The excited singlet state absorption cooperates with two-photon absorption to provide an excellent ultrafast optical limiting behavior with high linear transmittance, where the thresholds are 2.3-5.3 mJ/cm2 in the spectral region of 532-800 nm of femtosecond laser and 133 mJ/cm2 for picosecond pulse at 532 nm. These thresholds are lower than that of most of the optical limiters reported previously, which indicates PyDN is a promising candidate for ultrafast optical limiting.

10.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566197

RESUMO

The linear and nonlinear optical properties of two BODIPY derivatives, 1,7-Diphenyl-3,5-bis(9,9-dimethyl-9H-fluoren-2-yl)-boron-diuoride-azadipyrromethene (ZL-61) and 1,7-Diphenyl-3,5-bis(4-(1,2,2-triphenylvinyl)phenyl)-boron-diuoride-azadipyrromethene (ZL-22), were comprehensively investigated based on experimental and theoretical studies. It was found that both compounds show a strong two-photon absorption response in the near-infrared regime, and the two-photon-absorption cross-section values of ZL-61 and ZL-22 were determined to be 8321 GM and 1864 GM at 800 nm, respectively. The improvement of the two-photon absorption cross section in ZL-61 was attributed to the enhancement of the donor group, which was confirmed by transient absorption measurements and DFT calculation. Our results indicate that these BODIPY derivatives are a promising candidate for optical limiting and two-photon imaging applications.


Assuntos
Boro , Corantes Fluorescentes , Compostos de Boro , Porfobilinogênio/análogos & derivados
11.
Molecules ; 27(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558191

RESUMO

Optical nonlinearities of two all-carbon twistacenes, DPyA and DPyN, with the different π-conjugated central bridges were investigated. The nonlinear absorption properties of these compounds were measured using the femtosecond Z-scan with wavelengths between 650 and 900 nm. It has been found that the nonlinear absorption originated from two-photon absorption (TPA) and TPA-induced excited state absorption (ESA), wherein DPyA demonstrates higher performance than DPyN. The TPA cross section of DPyA (4300 GM) is nearly 4.3 times larger than that of DPyN at 650 nm. Moreover, the different central structures modulate the intensity of ESA at 532 nm, and DPyA exhibits an excellent ESA at 532 nm with multi-pulse excitation. Meanwhile, the result of data fitting and quantum chemistry calculation shows that the enhancement of nonlinear absorption in DPyA is due to the extended π- conjugated bridge and improved delocalization of π-electrons. These all-carbon twistacenes could yield potential applications in optical power limiting (OPL) technology.


Assuntos
Fótons
12.
Opt Express ; 29(12): 18572-18586, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154111

RESUMO

Metal nanorod arrays exhibit hyperbolic dispersion and optical nonlocality under certain conditions. Therefore, their optical behaviors can hardly be expressed by incident-angle-independent effective permittivity. Here we extract effective permittivity of silver nanorod arrays with diameters of 4 nm, 12 nm, and 20 nm by polarized transmission method in the visible range. The incident angles are chosen from 20° to 60° to study the influence of optical nonlocality on permittivity. We demonstrate how the diameter of the nanorods can control the effective permittivity beyond the effective medium theory. The results suggest that the effective permittivity gradually loses its accuracy as the diameter increases due to the optical nonlocality. Our experiment verifies that ultrathin nanorod arrays can resist the fluctuations caused by changes in incident angle. We also extract k-dependent effective permittivity of nanorods with larger diameters.

13.
Opt Express ; 29(16): 26137-26149, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614926

RESUMO

We present an all-optical scheme for the generation of longitudinal magnetization superoscillation based on the vectorial diffraction theory and the inverse Faraday effect. To achieve this, an azimuthally polarized high-order Laguerre-Gaussian vortex mode is firstly focused by a high numerical aperture (NA) objective and then impinges on an isotropic magneto-optical material. It is found that, by judiciously controlling the intrinsic arguments (radial mode index (p) and truncation parameter (ß)) of such a configurable vectorial vortex beam, the longitudinal magnetic domain induced in the focal plane can be switched from a peak sub-wavelength magnetization (> 0.36λ/NA), via the fastest Fourier magnetization component (∼0.36λ/NA), to a super-oscillation magnetization hotspot (< 0.36λ/NA). We further examine the dependence of the transverse size, the side lobe, and the energy conversion efficiency within the focal magnetization domain on both the p and ß of the initial vortex modes, confirming that the higher-order structured vortex beams are preferable alternatives to trigger robust longitudinal magnetization superoscillation. In addition, the underlying mechanisms behind the well-defined magnetization phenomena are unveiled. The ultra-small-scale longitudinal magnetization demonstrated here may hold massive potential applications in high-density all-optical magnetic recording/storage, super-resolution magnetic resonance imaging, atom trapping and spintronics.

14.
Inorg Chem ; 60(17): 13366-13375, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34428893

RESUMO

By utilizing Dy(hfac)3(H2O)2 to react with enantiomerically pure tridentate N,N,N-pincer ligands, namely (-)/(+)-2,6-bis(4',5'-pinene-2'-pyridyl)pyridine (LR and LS), respectively, homochiral DyIII enantiomeric pairs formulated as Dy(hfac)3LR/Dy(hfac)3LS (R-1/S-1) (hfac- = hexafluoroacetylacetonate) were achieved and structurally characterized. Meanwhile, their magnetic, photoluminescent (PL), and chiroptical properties were probed. The PL test results indicate that the precursor Dy(hfac)3(H2O)2 only shows very weak emission, while R-1 exhibits characteristic DyIII f-f transition emission bands at room temperature. Furthermore, the nonlinear optical responses of Dy(hfac)3(H2O)2, LR/LS, and R-1/S-1 were investigated in detail based on crystalline samples. The results reveal that LR and LS present the coexistence of second- and third-harmonic generation (SHG and THG) responses with more intense signals for SHG responses; and Dy(hfac)3(H2O)2 merely displays weak THG responses, while R-1 and S-1 also only exhibit THG responses. However, the THG intensities of R-1 and S-1 are more than six times larger than that of Dy(hfac)3(H2O)2 under the identical measurement conditions. These results demonstrate that introducing homochiral N,N,N-pincer ligands to replace two H2O molecules of Dy(hfac)3(H2O)2 results in significant improvements of both PL performances and THG responses of resultant R-1/S-1 enantiomers. R-1 and S-1 integrate PL, THG, and chiral optical activity in one molecule, suggesting their multifunctional merits. In particular, a convenient method is introduced to simultaneously test THG and SHG responses of molecular materials based on crystalline samples in this work.

15.
J Am Chem Soc ; 142(31): 13356-13361, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32697582

RESUMO

Discovering and constructing novel and fancy structures is the goal of many supramolecular chemists. In this work, we propose an assembly strategy based on the synergistic effect of coordination and covalent interactions to construct a set of octahedral supramolecular cages and adjust their degree of distortion. Our strategy innovatively utilizes the addition of sulfur atoms of a metal sulfide synthon, [Et4N][Tp*WS3] (A), to an alkynyl group of a pyridine-containing linker, resulting in a novel vertex with low symmetry, and of Cu(I) ions. By adjusting the length of the linker and the position of the reactive alkynyl group, the control of the deformation degree of the octahedral cages can be realized. These supramolecular cages exhibit enhanced third-order nonlinear optical (NLO) responses. The results offer a powerful strategy to construct novel distorted cage structures as well as control the degree of distortion of supramolecular geometries.

16.
Anal Chem ; 92(5): 3517-3521, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066230

RESUMO

Six mitochondria/lysosomes self-targetable and viscosity-sensitive dyes (1a-1f) were developed via simple structure modification on cyanine-derived dyes. They all showed remarkable OFF-ON fluorescent response to viscosity in the near-infrared region (652-690 nm) and exhibited good linear relationship with solution viscosity. The transient absorption spectra were used to evaluate the excited-state lifetime of dye 1a in different viscosity environments. Furthermore, cellular imaging assays indicated that different derivatives (1a-1f) with the same chromophore core exhibited different organelle-targeting abilities. Among them, dyes 1a-1c could sense lysosomal viscosity fluctuations while dyes 1d-1f could be applied in mitochondrial viscosity detections.


Assuntos
Carbocianinas/metabolismo , Corantes Fluorescentes/metabolismo , Raios Infravermelhos , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Células HeLa , Humanos , Viscosidade
17.
Opt Express ; 28(22): 33334-33345, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33115000

RESUMO

The multilayer dielectric (MLD) grating is a critical device for combining multiple laser beams into a single beam in a spectral beam combining (SBC) system. We established a theoretical thermal deformation model of the laser-irradiated MLD grating. Thermal deformation on the surface of the grating is simulated according to a series of parameters including the laser irradiation time, laser power density, and substrate size. To verify the model, we exposed a 960 l/mm, 50×50×1.5 mm3 grating to a laser power density of 3.61 kW/cm2 and observed the temperature change. We used a Twyman-Green interferometer to measure the interference fringes on the grating surface. Based on the Fourier-transform method and a Zernike polynomial fitting method, the real-time grating surface profile is reconstructed. The results show that substrate thickness increase or area decrease can reduce thermal deformation, the average decreases are 18.3% and 19.9%, respectively. The discussion and analysis of the grating thermal deformation are potentially valuable for designing grating to decrease the thermal deformation and improve the combined beam quality of a SBC system.

18.
Nanotechnology ; 31(13): 135001, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31810071

RESUMO

The nonlinear optical properties of an InP/ZnS core-shell quantum dot toluene solution were investigated using a Z-scan and transient absorption technique with femtosecond pulses and nanosecond pulses at 532 nm wavelengths, respectively. The research results showed that InP/ZnS core-shell quantum dots exhibited saturated absorption under the excitation of femtosecond pulses, and the switch from saturated absorption to reverse saturated absorption was observed under the excitation of nanosecond pulses. The mechanism of the switch was attributed to excited-state absorption. Moreover, the nonlinear refraction was shown as self-focusing and self-defocusing under the excitation of femtosecond and nanosecond pulses, respectively, which were attributed to the Kerr effect of electrons and the thermal effect of InP/ZnS quantum dots, respectively. The investigations show that InP/ZnS core-shell quantum dots are good materials, and have many potential applications in optical and electrical fields.

19.
J Phys Chem A ; 124(51): 10808-10816, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33317265

RESUMO

Three cross-conjugated chalcone derivatives T3CT, T3CP2, and T3CP3 were designed and synthesized to develop excellent organic nonlinear optical (NLO) materials. In a Z-scan experiment, all compounds show good NLO absorption characteristics in the visible to near-infrared region. The photophysical mechanism is confirmed to be two-photon absorption (TPA)-induced excited-state absorption (ESA). Intramolecular charge transfer (ICT) observed in transient absorption spectra (TAS) significantly affects molecular NLO properties. We define the π-conjugated system that dominates the electron transition process in the cross-conjugated structure as the effective π-conjugated structure. Electron transition analysis shows a sufficiently strong ICT can effectively expand the effective π-conjugated structure in these cross-conjugated structures. The TPA cross sections of these compounds at 650 and 750 nm are only in the range of 17-97 GM. However, we achieve a significant enhancement of the TPA cross section at 580 nm (1737-2027 GM) by extending the effective π-conjugated structure. Excited by 580 nm femtosecond laser pulses, all compounds exhibit excellent OL performance and the minimum OL threshold is 4.71 × 10-3 J/cm2. The results show that these cross-conjugated chalcone derivatives have promising applications in OL, and their NLO performance can be effectively improved by modulating the effective π-conjugated structure.

20.
Inorg Chem ; 58(8): 4792-4801, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30920208

RESUMO

In this paper, a series of organic compounds (L1-L6) with a D-π-A conjugation system were prepared. The investigations of third-order nonlinear optical (NLO) properties indicate that L1-L6 show different degrees of third-order NLO responses. It is surprising that introducing metal ions can effectively regulate their third-order NLO properties and even change the type of nonlinear absorption signal from reverse saturable absorption to saturable absorption, which can be attributed to the formation of coordination bonds between metal ions and L1-L6. It has aroused our tremendous interests in regulating third-order NLO performance. The regulation mechanisms were also discussed through the pump-probe measurements and the density functional theory. The enhancement of electron transfer efficiency is considered to be the key to improving NLO performance. Furthermore, we also obtained two coordination complexes [Cu(L1)2(NO3)2] (1) and [Cd(L1)2I2] (2) based on L1, which further proved the coordination between metal ions and L1-L6. Ligand-to-metal or metal-to-ligand charge transfer makes more electronic delocalization, leading to better third-order NLO properties. This work provides new ideas and explorations for the excogitation of third-order NLO materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA