RESUMO
Domain walls separating differently oriented polarization regions of ferroelectric materials are known to greatly impact nanoscale materials and device functionalities. Though the understanding of size effects in ferroelectric nanostructures has progressed, the effect of thickness downsizing on domain wall scaling behavior has remained unexplored. Using piezoresponse force microscopy, epitaxial BaTiO3 film thickness size (2-90 nm) effects on the critical scaling universality of the domain wall dynamical creep and static roughness exponents including dimensionality is demonstrated. Independently estimated static roughness exponents ranging between 0.34 and 0.28 and dynamical creep exponents transition from 0.54 to 0.22 elucidate the domain wall dimensionality transition from two- to quasi-one-dimension in the thickness range of 10-25 nm, which is later validated by evaluating effective dimensionality within the paradigm of random-bond universality. The observed interdimensional transition is further credenced to the compressive strain and long-range strain-dipolar interactions, as revealed by the structural analyses and additional measurements with modified substrate-induced strain. These results provide new insights into the understanding of size effects in nanoscale ferroelectricity, paving the way toward future nanodevices.
RESUMO
We present 'unusual' resistive switching behaviours in electrochemical metallization (ECM) cells utilizing a dual-layer (SiOx/GeSex: SiOx on GeSex) solid electrolyte (SE). The observed switching behaviour markedly varies with the thickness of the upper SiOx layer and compliance current: (i) monostable switching, (ii) counter-eightwise bipolar switching, and (iii) combination of monostable and eightwise bipolar switching behaviours. Focusing on cases (i) and (iii), electrical and chemical analyses on these chameleonic cells were performed in an attempt to gain clues to the understanding of the observed complexity. The chemical analysis indicated the upper SiOx layer as a chemical potential well for Cu ions-Cu ions were largely confined in the well. This non-uniform distribution of Cu across the SE perhaps hints at the mechanism for the complex behaviour; it may be a 'zero-sum game' between SiOx and GeSex layers, in which the two layers fight over the limited number of Cu atoms/ions.
RESUMO
A multiferroic tunnel junction (MFTJ) promisingly offers multinary memory states in response to electric- and magnetic-fields, referring to tunneling electroresistance (TER) and tunneling magnetoresistance (TMR), respectively. In spite of recent progress, a substantial number of questions concerning the understanding of these two intertwined phenomena still remain open, e.g. the role of microstructural/chemical asymmetry at the interfaces of the junction and the effect of an electrode material on the MFTJ properties. In this regard, we look into the multiferroic effect of all-complex-oxide MFTJ (La0.7Sr0.3MnO3/Pb(Zr0.3Ti0.7)O3/La0.7Sr0.3MnO3). The results reveal apparent TER-TMR interplay-captured by the reversible electric-field control of the TMR effect. Finally, microscopy analysis on the MFTJ revealed that the observed TER-TMR interplay is perhaps mediated by microstructural and chemical asymmetry in our nominally symmetric MFTJ.
RESUMO
Among recently discovered ferroelectricity-related phenomena, the tunnelling electroresistance (TER) effect in ferroelectric tunnel junctions (FTJs) has been attracting rapidly increasing attention owing to the emerging possibilities of non-volatile memory, logic and neuromorphic computing applications of these quantum nanostructures. Despite recent advances in experimental and theoretical studies of FTJs, many questions concerning their electrical behaviour still remain open. In particular, the role of ferroelectric/electrode interfaces and the separation of the ferroelectric-driven TER effect from electrochemical ('redox'-based) resistance-switching effects have to be clarified. Here we report the results of a comprehensive study of epitaxial junctions comprising BaTiO(3) barrier, La(0.7)Sr(0.3)MnO(3) bottom electrode and Au or Cu top electrodes. Our results demonstrate a giant electrode effect on the TER of these asymmetric FTJs. The revealed phenomena are attributed to the microscopic interfacial effect of ferroelectric origin, which is supported by the observation of redox-based resistance switching at much higher voltages.
RESUMO
Thirty heterokaryons, formed by protoplast fusion of Aspergillus nidulans and Aspergillus tubingensis, were selected on the basis of their ability to grow on 2-deoxyglucose (0.2 %, w/v) and intermediate spore color. These heterokaryons were studied for cellulase production using shake flask and solid substrate cultures at 40 °C. Fusants 51 and 28 exhibited appreciably higher levels of endoglucanase, cellobiohydrolase, ß-glucosidase, and FPase activities when compared with parental strains. Employing proteomic-based approaches, the differential expression of proteins in secretome of fusants and parental strains were analyzed using two-dimensional electrophoresis. The expression of some of the proteins in the fusants was found to be up/downregulated. The upregulated proteins in the fusant 51 were identified by liquid chromatography-mass spectroscopy as endoxylanase, endochitinase, ß-glucosidase, as well as hypothetical proteins. The cellulases produced by fusants 28 and 51 showed improved saccharification of alkali treated rice straw when compared with the parental strains.
Assuntos
Aspergillus/classificação , Aspergillus/crescimento & desenvolvimento , Fusão Celular/métodos , Celulase/genética , Proteínas Fúngicas/genética , Proteoma/genética , Protoplastos/fisiologia , Especificidade da EspécieRESUMO
Bipolar switching behaviours of electrochemical metallization (ECM) cells with dual-layer solid electrolytes (SiOx-Ge0.3Se0.7) were analyzed. Type 1 ECM cell, Pt (bottom electrode)/SiOx/Ge0.3Se0.7/Cu (top electrode), exhibited typical eightwise current-voltage (I-V) hysteresis of ECM cells whereas Type 2 ECM cell, Pt (bottom electrode)/Ge0.3Se0.7/SiOx/Cu(top electrode), showed counter-eightwise hysteresis. In addition, absolute off-switching voltage in Type 2 cell is lower than that in Type 1 cell while on-switching voltage in both cells is almost the same. An attempt to understand this electrolyte-stack-sequence-depending switching polarity reversal was made in terms of the ECM cell potential change upon the electrolyte stack sequence and the consequent change in Cu filament growth direction. Relevant experimental evidence for the hypothesis was obtained regarding the switching behaviours. Furthermore, given the switching polarity reversal, feasibility of serial complementary resistive switches was also demonstrated.
RESUMO
A thermotolerant Aspergillus fumigatus strain isolated from composting pile of mixed industrial waste was found to produce a spectrum of cellulase and hemicellulases when cultured on rice straw solidified substrate. The two-dimensional electrophoresis (2DE) resolved the secretome into 57 distinct protein spots. The zymograms developed against 2DE gels identified the presence of three ß-glucosidases and five CBHI/EGI isoforms in the secretome. The peptide mass fingerprinting of 17 protein spots by liquid chromatography mass spectrometry characterized the secretome into different glycosyl hydrolase families. The enzyme cocktail produced by A. fumigatus was capable of efficient hydrolysis of alkali pretreated rice straw (at 7% and 10% w/v) resulting in 95% and 91% saccharification, respectively.
Assuntos
Álcalis/química , Aspergillus fumigatus/enzimologia , Glicosídeo Hidrolases/metabolismo , Oryza/química , Celulases/metabolismo , Eletroforese em Gel Bidimensional , Hidrólise , Isoformas de Proteínas/metabolismoRESUMO
This study reports differential expression of endoglucanase (EG) and beta-glucosidase (betaG) isoforms of Aspergillus terreus. Expression of multiple isoforms was observed, in presence of different carbon sources and culture conditions, by activity staining of poly acrylamide gel electrophoresis gels. Maximal expression of four EG isoforms was observed in presence of rice straw (28 U/g DW substrate) and corn cobs (1.147 U/ml) under solid substrate and shake flask culture, respectively. Furthermore, the sequential induction of EG isoforms was found to be associated with the presence of distinct metabolites (monosaccharides/oligosaccharides) i.e., xylose (X), G(1), G(3) and G(4) as well as putative positional isomers (G(1)/G(2), G(2)/G(3)) in the culture extracts sampled at different time intervals, indicating specific role of these metabolites in the sequential expression of multiple EGs. Addition of fructose and cellobiose to corn cobs containing medium during shake flask culture resulted in up-regulation of EG activity, whereas addition of mannitol, ethanol and glycerol selectively repressed the expression of three EG isoforms (Ia, Ic and Id). The observed regulation profile of betaG isoforms was distinct when compared to EG isoforms, and addition of glucose, fructose, sucrose, cellobiose, mannitol and glycerol resulted in down-regulation of one or more of the four betaG isoforms.