RESUMO
Substantial efforts are underway to tackle the current challenges of sustainability and environmental impacts linked to orthodox animal agriculture. This had led to advancement in food innovation guiding the fabrication of edible scaffolds based cultured meat. This current research work aims to develop and validate a new approach in fabricating a 3D porous scaffold of decellularized apple coated with a polymer mixture of gelatin/alginate for cultivated meat production. The fabricated noncoated (A) and coated (CA) 3D scaffolds presented different ratios of pore sizes with the medium-sized pores (100-250 µm) being higher in the case of CA. The water absorption capacity of CA (â¼64 %) was almost two folds compared to A (â¼31 %) with delayed digestion in the presence of gastric simulated juice with or without pepsin. Both the scaffolds showed the capability to adhere and proliferate muscle satellite cells as single cell culture and muscle satellite along with NIH/3T3 fibroblast cells as co-culture. However, the CA scaffolds showed enhanced capability to adhere and proliferate the two cell lines on its surface compared to A. This work demonstrates an efficient way to fabricate decellularized plant scaffolds with high potential to be used in the production of cultured meat for the food industry.
Assuntos
Malus , Alicerces Teciduais , Animais , Alginatos , Gelatina , Carne in vitroRESUMO
In this paper, novel pH-responsive, semi-interpenetrating polymer hydrogels based on tamarind gum-co-poly(acrylamidoglycolic acid) (TMGA) polymers were synthesized using simple free radical polymerization in the presence of bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker and potassium persulfate as a initiator. In addition, these hydrogels were used as templates for the green synthesis of silver nanoparticles (13.4 ± 3.6 nm in diameter, TMGA-Ag) by using leaf extract of Teminalia bellirica as a reducing agent. Swelling kinetics and the equilibrium swelling behavior of the TMGA hydrogels were investigated in various pH environments, and the maximum % of equilibrium swelling behavior observed was 2882 ± 1.2. The synthesized hydrogels and silver nanocomposites were characterized via UV, FTIR, XRD, SEM and TEM. TMGA and TMGA-Ag hydrogels were investigated to study the characteristics of drug delivery and antimicrobial study. Doxorubicin hydrochloride, a chemotherapeutic agent successfully encapsulated with maximum encapsulation efficiency, i.e., 69.20 ± 1.2, was used in in vitro release studies in pH physiological and gastric environments at 37 °C. The drug release behavior was examined with kinetic models such as zero-order, first-order, Higuchi, Hixson Crowell and Korsmeyer-Peppas. These release data were best fitted with the Korsemeyer-Peppas transport mechanism, with n = 0.91. The effects of treatment on HCT116 human colon cancer cells were assessed via cell viability and cell cycle analysis. The antimicrobial activity of TMGA-Ag hydrogels was studied against Staphylococcus aureus and Klebsiella pneumonia. Finally, the results demonstrate that TMGA and TMGA-Ag are promising candidates for anti-cancer drug delivery and the inactivation of pathogenic bacteria, respectively.