Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS Genet ; 18(5): e1010198, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35613247

RESUMO

Competence for DNA transformation is a major strategy for bacterial adaptation and survival. Yet, this successful tactic is energy-consuming, shifts dramatically the metabolism, and transitory impairs the regular cell-cycle. In streptococci, complex regulatory pathways control competence deactivation to narrow its development to a sharp window of time, a process known as competence shut-off. Although characterized in streptococci whose competence is activated by the ComCDE signaling pathway, it remains unclear for those controlled by the ComRS system. In this work, we investigate competence shut-off in the major human gut commensal Streptococcus salivarius. Using a deterministic mathematical model of the ComRS system, we predicted a negative player under the control of the central regulator ComX as involved in ComS/XIP pheromone degradation through a negative feedback loop. The individual inactivation of peptidase genes belonging to the ComX regulon allowed the identification of PepF as an essential oligoendopeptidase in S. salivarius. By combining conditional mutants, transcriptional analyses, and biochemical characterization of pheromone degradation, we validated the reciprocal role of PepF and XIP in ComRS shut-off. Notably, engineering cleavage site residues generated ultra-resistant peptides producing high and long-lasting competence activation. Altogether, this study reveals a proteolytic shut-off mechanism of competence in the salivarius group and suggests that this mechanism could be shared by other ComRS-containing streptococci.


Assuntos
Proteínas de Bactérias , Regulon , Proteínas de Bactérias/metabolismo , Competência de Transformação por DNA/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Peptídeos/genética , Feromônios/genética , Feromônios/metabolismo , Regulon/genética , Transdução de Sinais/genética
2.
Proc Natl Acad Sci U S A ; 117(14): 7745-7754, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198205

RESUMO

Competence allows bacteria to internalize exogenous DNA fragments for the acquisition of new phenotypes such as antibiotic resistance or virulence traits. In most streptococci, competence is regulated by ComRS signaling, a system based on the mature ComS pheromone (XIP), which is internalized to activate the (R)RNPP-type ComR sensor by triggering dimerization and DNA binding. Cross-talk analyses demonstrated major differences of selectivity between ComRS systems and raised questions concerning the mechanism of pheromone-sensor recognition and coevolution. Here, we decipher the molecular determinants of selectivity of the closely related ComRS systems from Streptococcus thermophilus and Streptococcus vestibularis Despite high similarity, we show that the divergence in ComR-XIP interaction does not allow reciprocal activation. We perform the structural analysis of the ComRS system from S. vestibularis. Comparison with its ortholog from S. thermophilus reveals an activation mechanism based on a toggle switch involving the recruitment of a key loop by the XIP C terminus. Together with a broad mutational analysis, we identify essential residues directly involved in peptide binding. Notably, we generate a ComR mutant that displays a fully reversed selectivity toward the heterologous pheromone with only five point mutations, as well as other ComR variants featuring XIP bispecificity and/or neofunctionalization for hybrid XIP peptides. We also reveal that a single XIP mutation relaxes the strictness of ComR activation, suggesting fast adaptability of molecular communication phenotypes. Overall, this study is paving the way toward the rational design or directed evolution of artificial ComRS systems for a range of biotechnological and biomedical applications.


Assuntos
Feromônios/metabolismo , Transdução de Sinais , Streptococcus/metabolismo , Sequência de Aminoácidos , Luciferases/metabolismo , Modelos Moleculares , Mutação Puntual/genética , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
3.
J Biol Chem ; 297(6): 101346, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715127

RESUMO

Competence for natural transformation extensively contributes to genome evolution and the rapid adaptability of bacteria dwelling in challenging environments. In most streptococci, this process is tightly controlled by the ComRS signaling system, which is activated through the direct interaction between the (R)RNPP-type ComR sensor and XIP pheromone (mature ComS). The overall mechanism of activation and the basis of pheromone selectivity have been previously reported in Gram-positive salivarius streptococci; however, detailed 3D-remodeling of ComR leading up to its activation remains only partially understood. Here, we identified using a semirational mutagenesis approach two residues in the pheromone XIP that bolster ComR sensor activation by interacting with two aromatic residues of its XIP-binding pocket. Random and targeted mutagenesis of ComR revealed that the interplay between these four residues remodels a network of aromatic-aromatic interactions involved in relaxing the sequestration of the DNA-binding domain. Based on these data, we propose a comprehensive model for ComR activation based on two major conformational changes of the XIP-binding domain. Notably, the stimulation of this newly identified trigger point by a single XIP substitution resulted in higher competence and enhanced transformability, suggesting that pheromone-sensor coevolution counter-selects for hyperactive systems in order to maintain a trade-off between competence and bacterial fitness. Overall, this study sheds new light on the ComRS activation mechanism and how it could be exploited for biotechnological and biomedical purposes.


Assuntos
Proteínas de Bactérias/metabolismo , Feromônios/metabolismo , Percepção de Quorum , Streptococcus thermophilus/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Feromônios/química , Feromônios/genética , Domínios Proteicos , Streptococcus thermophilus/química , Streptococcus thermophilus/genética , Transformação Bacteriana
4.
J Biol Chem ; 293(32): 12303-12317, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29887527

RESUMO

Bacterial lactate racemase is a nickel-dependent enzyme that contains a cofactor, nickel pyridinium-3,5-bisthiocarboxylic acid mononucleotide, hereafter named nickel-pincer nucleotide (NPN). The LarC enzyme from the bacterium Lactobacillus plantarum participates in NPN biosynthesis by inserting nickel ion into pyridinium-3,5-bisthiocarboxylic acid mononucleotide. This reaction, known in organometallic chemistry as a cyclometalation, is characterized by the formation of new metal-carbon and metal-sulfur σ bonds. LarC is therefore the first cyclometallase identified in nature, but the molecular mechanism of LarC-catalyzed cyclometalation is unknown. Here, we show that LarC activity requires Mn2+-dependent CTP hydrolysis. The crystal structure of the C-terminal domain of LarC at 1.85 Å resolution revealed a hexameric ferredoxin-like fold and an unprecedented CTP-binding pocket. The loss-of-function of LarC variants with alanine variants of acidic residues leads us to propose a carboxylate-assisted mechanism for nickel insertion. This work also demonstrates the in vitro synthesis and purification of the NPN cofactor, opening new opportunities for the study of this intriguing cofactor and of NPN-utilizing enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Citidina Trifosfato/metabolismo , Lactobacillus plantarum/enzimologia , Níquel/metabolismo , Nucleotídeos/metabolismo , Compostos Organometálicos/metabolismo , Racemases e Epimerases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Níquel/química , Nucleotídeos/química , Compostos Organometálicos/química , Conformação Proteica , Racemases e Epimerases/química , Racemases e Epimerases/genética , Homologia de Sequência
5.
Proc Natl Acad Sci U S A ; 113(20): 5598-603, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27114550

RESUMO

The lactate racemase enzyme (LarA) of Lactobacillus plantarum harbors a (SCS)Ni(II) pincer complex derived from nicotinic acid. Synthesis of the enzyme-bound cofactor requires LarB, LarC, and LarE, which are widely distributed in microorganisms. The functions of the accessory proteins are unknown, but the LarB C terminus resembles aminoimidazole ribonucleotide carboxylase/mutase, LarC binds Ni and could act in Ni delivery or storage, and LarE is a putative ATP-using enzyme of the pyrophosphatase-loop superfamily. Here, we show that LarB carboxylates the pyridinium ring of nicotinic acid adenine dinucleotide (NaAD) and cleaves the phosphoanhydride bond to release AMP. The resulting biscarboxylic acid intermediate is transformed into a bisthiocarboxylic acid species by two single-turnover reactions in which sacrificial desulfurization of LarE converts its conserved Cys176 into dehydroalanine. Our results identify a previously unidentified metabolic pathway from NaAD using unprecedented carboxylase and sulfur transferase reactions to form the organic component of the (SCS)Ni(II) pincer cofactor of LarA. In species where larA is absent, this pathway could be used to generate a pincer complex in other enzymes.


Assuntos
Lactobacillus plantarum/enzimologia , NAD/análogos & derivados , Níquel/metabolismo , Racemases e Epimerases/fisiologia , Enxofre/metabolismo , Biocatálise , Carboxiliases/fisiologia , Redes e Vias Metabólicas , NAD/metabolismo
6.
Int J Mol Sci ; 19(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223492

RESUMO

By manipulating the various physicochemical properties of amino acids, the design of peptides with specific self-assembling properties has been emerging for more than a decade. In this context, short peptides possessing detergent properties (so-called "peptergents") have been developed to self-assemble into well-ordered nanostructures that can stabilize membrane proteins for crystallization. In this study, the peptide with "peptergency" properties, called ADA8 and extensively described by Tao et al., is studied by molecular dynamic simulations for its self-assembling properties in different conditions. In water, it spontaneously forms beta sheets with a ß barrel-like structure. We next simulated the interaction of this peptide with a membrane protein, the bacteriorhodopsin, in the presence or absence of a micelle of dodecylphosphocholine. According to the literature, the peptergent ADA8 is thought to generate a belt of ß structures around the hydrophobic helical domain that could help stabilize purified membrane proteins. Molecular dynamic simulations are here used to image this mechanism and provide further molecular details for the replacement of detergent molecules around the protein. In addition, we generalized this behavior by designing an amphipathic peptide with beta propensity, which was called ABZ12. Both peptides are able to surround the membrane protein and displace surfactant molecules. To our best knowledge, this is the first molecular mechanism proposed for "peptergency".


Assuntos
Detergentes/química , Simulação de Dinâmica Molecular , Peptídeos/química , Aminoácidos/química , Detergentes/farmacologia , Proteínas de Membrana/química , Peptídeos/farmacologia , Conformação Proteica , Relação Estrutura-Atividade , Água/química
7.
J Biol Chem ; 289(42): 29086-96, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25160617

RESUMO

The enzymes of the ß-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of D-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on D-malate as a carbon source, the D-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB(-) strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (L(+)-tartrate, D-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Leucina/biossíntese , Malato Desidrogenase/metabolismo , Catálise , Cromossomos Bacterianos , Clonagem Molecular , Fluorometria , Fenótipo , Filogenia , Regiões Promotoras Genéticas
8.
Chembiochem ; 16(9): 1343-9, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25914325

RESUMO

There is an increasing demand for the development of sensitive enzymatic assays compatible with droplet-based microfluidics. Here we describe an original strategy, activity-fed translation (AFT), based on the coupling of enzymatic activity to in vitro translation of a fluorescent protein. We show that methionine release upon the hydrolysis of phenylacetylmethionine by penicillin acylase enabled in vitro expression of green fluorescent protein. An autocatalytic setup where both proteins are expressed makes the assay highly sensitive, as fluorescence was detected in droplets containing single PAC genes. Adding a PCR step in the droplets prior to the assay increased the sensitivity further. The strategy is potentially applicable for any activity that can be coupled to the production of an amino acid, and as the microdroplet volume is small the use of costly reagents such as in vitro expression mixtures is not limiting for high-throughput screening projects.


Assuntos
Ensaios Enzimáticos/métodos , Técnicas Analíticas Microfluídicas/métodos , Penicilina Amidase/análise , Reação em Cadeia da Polimerase/métodos , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Modelos Moleculares , Penicilina Amidase/genética , Penicilina Amidase/metabolismo , Plasmídeos/genética , Biossíntese de Proteínas , Transcrição Gênica
9.
Sci Rep ; 14(1): 13999, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890528

RESUMO

Penicillin binding proteins (PBPs) are involved in biosynthesis, remodeling and recycling of peptidoglycan (PG) in bacteria. PBP-A from Thermosynechococcus elongatus belongs to a cyanobacterial family of enzymes sharing close structural and phylogenetic proximity to class A ß-lactamases. With the long-term aim of converting PBP-A into a ß-lactamase by directed evolution, we simulated what may happen when an organism like Escherichia coli acquires such a new PBP and observed growth defect associated with the enzyme activity. To further explore the molecular origins of this harmful effect, we decided to characterize deeper the activity of PBP-A both in vitro and in vivo. We found that PBP-A is an enzyme endowed with DD-carboxypeptidase and DD-endopeptidase activities, featuring high specificity towards muropeptides amidated on the D-iso-glutamyl residue. We also show that a low promiscuous activity on non-amidated peptidoglycan deteriorates E. coli's envelope, which is much higher under acidic conditions where substrate discrimination is mitigated. Besides expanding our knowledge of the biochemical activity of PBP-A, this work also highlights that promiscuity may depend on environmental conditions and how it may hinder rather than promote enzyme evolution in nature or in the laboratory.


Assuntos
Escherichia coli , Proteínas de Ligação às Penicilinas , Peptidoglicano , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/química , Peptidoglicano/metabolismo , Especificidade por Substrato , Cianobactérias/metabolismo , Cianobactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Synechococcus
10.
J Clin Microbiol ; 50(12): 4138-40, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23052308

RESUMO

We demonstrated that an exogenous conjugate consisting of a ß-lactamase and a monoclonal antibody against a surface antigen of Salmonella is capable of conferring selective penicillin resistance on bacteria. This immunoenzymatic approach allows the rapid growth and detection of specific bacteria and may find other applications when temporary and nongenetic antibiotic resistance is required.


Assuntos
Anticorpos Antibacterianos/metabolismo , Anticorpos Monoclonais/metabolismo , Resistência às Penicilinas , Penicilinas/farmacologia , Salmonella/isolamento & purificação , Coloração e Rotulagem/métodos , beta-Lactamases/metabolismo , Técnicas Bacteriológicas/métodos , Humanos , Técnicas Imunoenzimáticas/métodos
11.
Anal Chem ; 83(8): 2852-7, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21413778

RESUMO

Droplet-based microfluidics is a powerful tool for biology and chemistry as it allows the production and the manipulation of picoliter-size droplets acting as individual reactors. In this format, high-sensitivity assays are typically based on fluorescence, so fluorophore exchange between droplets must be avoided. Fluorogenic substrates based on the coumarin leaving group are widely used to measure a variety of enzymatic activities, but their application in droplet-based microfluidic systems is severely impaired by the fast transport of the fluorescent product between compartments. Here we report the synthesis of new amidase fluorogenic substrates based on 7-aminocoumarin-4-methanesulfonic acid (ACMS), a highly water-soluble dye, and their suitability for droplet-based microfluidics applications. Both substrate and product had the required spectral characteristics and remained confined in droplets from hours to days. As a model experiment, a phenylacetylated ACMS was synthesized and used as a fluorogenic substrate of Escherichia coli penicillin G acylase. Kinetic parameters (k(cat) and K(M)) measured in bulk and in droplets on-chip were very similar, demonstrating the suitability of this synthesis strategy to produce a variety of ACMS-based substrates for assaying amidase activities both in microtiter plate and droplet-based microfluidic formats.


Assuntos
Cumarínicos/química , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/química , Mesilatos/química , Técnicas Analíticas Microfluídicas/métodos , Penicilina Amidase/análise , Cumarínicos/síntese química , Escherichia coli/enzimologia , Corantes Fluorescentes/síntese química , Cinética , Mesilatos/síntese química , Modelos Moleculares , Estrutura Molecular , Penicilina Amidase/metabolismo , Especificidade por Substrato
12.
Chembiochem ; 12(6): 904-13, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21425229

RESUMO

Allosteric regulation of enzyme activity is a remarkable property of many biological catalysts. Up till now, engineering an allosteric regulation into native, unregulated enzymes has been achieved by the creation of hybrid proteins in which a natural receptor, whose conformation is controlled by ligand binding, is inserted into an enzyme structure. Here, we describe a monomeric enzyme, TEM1-ß-lactamase, that features an allosteric aminoglycoside binding site created de novo by directed-evolution methods. ß-Lactamases are highly efficient enzymes involved in the resistance of bacteria against ß-lactam antibiotics, such as penicillin. Aminoglycosides constitute another class of antibiotics that prevent bacterial protein synthesis, and are neither substrates nor ligands of the native ß-lactamases. Here we show that the engineered enzyme is regulated by the binding of kanamycin and other aminoglycosides. Kinetic and structural analyses indicate that the activation mechanism involves expulsion of an inhibitor that binds to an additional, fortuitous site on the engineered protein. These analyses also led to the defining of conditions that allowed an aminoglycoside to be detected at low concentration.


Assuntos
Aminoglicosídeos/química , Antibacterianos/química , beta-Lactamases/química , Sítio Alostérico , Calorimetria , Evolução Molecular Direcionada , Canamicina/química , Cinética , Ligação Proteica , Engenharia de Proteínas , Estrutura Terciária de Proteína , beta-Lactamases/genética , beta-Lactamases/metabolismo
13.
Curr Opin Chem Biol ; 61: 107-113, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33385931

RESUMO

As an important sector of the chemical industry, biocatalysis requires the continuous development of enzymes with tailor-made activity, selectivity, stability, or tolerance to unnatural environments. This is now routinely achieved by directed evolution based on iterative cycles of genetic diversification and activity screening. Here, we highlight its recent developments. First, the design of "smarter" libraries by focused mutagenesis may be a crucial start-up for a fast and successful outcome. Then library assembly and expression are also key steps that benefits from modern molecular biology progresses. Finally, various strategies may be considered for library screening depending on the final objective: while low-throughput direct assays have been very successful in generating enzymes for important biocatalytic processes, even in bringing completely new chemistries to the enzyme world, ultrahigh-throughput screening methods are emerging as powerful approaches for engineering the next generation of industrial enzymes.


Assuntos
Biocatálise , Evolução Molecular Direcionada , Ensaios de Triagem em Larga Escala , Engenharia de Proteínas
14.
Nat Microbiol ; 6(1): 27-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139884

RESUMO

Gram-negative bacteria are surrounded by a cell envelope that comprises an outer membrane (OM) and an inner membrane that, together, delimit the periplasmic space, which contains the peptidoglycan (PG) sacculus. Covalent anchoring of the OM to the PG is crucial for envelope integrity in Escherichia coli. When the OM is not attached to the PG, the OM forms blebs and detaches from the cell. The Braun lipoprotein Lpp1 covalently attaches OM to the PG but is present in only a small number of γ-proteobacteria; the mechanism of OM-PG attachment in other species is unclear. Here, we report that the OM is attached to PG by covalent cross-links between the N termini of integral OM ß-barrel-shaped proteins (OMPs) and the peptide stems of PG in the α-proteobacteria Brucella abortus and Agrobacterium tumefaciens. Cross-linking is catalysed by L,D-transpeptidases and attached OMPs have a conserved alanyl-aspartyl motif at their N terminus. Mutation of the aspartate in this motif prevents OMP cross-linking and results in OM membrane instability. The alanyl-aspartyl motif is conserved in OMPs from Rhizobiales; it is therefore feasible that OMP-PG cross-links are widespread in α-proteobacteria.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella abortus/metabolismo , Peptidoglicano/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/metabolismo , Parede Celular/metabolismo , Lipoproteínas/metabolismo , Peptidil Transferases/metabolismo , Ligação Proteica/fisiologia
15.
FEBS Lett ; 594(15): 2421-2430, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32412093

RESUMO

Promiscuous activities of enzymes may serve as starting points for the evolution of new functions. However, most experimental examples of promiscuity affording an observable phenotype necessitate the artificial overexpression of the target enzyme. Here, we show that 3-isopropylmalate dehydrogenase (IPMDH), an enzyme involved in leucine biosynthesis, has a secondary activity on d-malate, which is sufficient for d-malate assimilation under physiological conditions where the enzyme is upregulated. In vitro, the turnover constant (kcat ) of IPMDH for d-malate is about 30-fold lower than the kcat for 3-isopropylmalate, yet sufficiently high to support the growth on d-malate. From an evolutionary perspective, our results highlight the possibility of phenotype emergence triggered by arbitrary changes in environmental conditions and prior to any mutational event.


Assuntos
3-Isopropilmalato Desidrogenase/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Malatos/metabolismo , Malatos/farmacologia
16.
Int J Pharm ; 573: 118834, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31715342

RESUMO

Aluminum hydroxide (AH) salts are widely used as vaccine adjuvants and controlling antigen-AH interactions is a key challenge in vaccine formulation. In a previous work, we have developed a quartz crystal microbalance (QCM) platform, based on stable AH-coated sensors, to explore the mechanisms of model antigen adsorption. The QCM study of bovine serum albumin (BSA) adsorption at different pH and ionic strength (I) values showed that protein adsorption on AH adjuvant at physiological pH cannot be explained mainly by electrostatic interactions, in contrast with previous reports. Here, we exploit further the developed QCM platform to investigate the role of phosphate-hydroxyl ligand exchanges in the adsorption mechanism of BSA, human serum albumin (HSA) and ovalbumin (OVA) on two commercial AH adjuvants. BSA adsorption decreased on immobilized AH particles previously treated with KH2PO4, highlighting the role of exchangeable sites on AH particles in the adsorption process. BSA and OVA were dephosphorylated by treatment with an acid phosphatase to decrease their phosphate content by about 80% and 25%, respectively. Compared to native BSA, adsorption of dephosphorylated BSA decreased significantly on one AH adjuvant at pH 7. Adsorption of dephosphorylated OVA was comparable to the one of native OVA. Further QCM assays showed that phospho-amino acids (PO4-serine and PO4-threonine) displaced previously adsorbed BSA and OVA from AH particles in conditions that were depending on the protein and the AH. Taken together, these observations suggest that phosphate-hydroxyl ligand exchange is an important adsorption mechanism of proteins on AH. These results moreover confirm that the developed AH-coated QCM sensors offer a new platform for the study of antigen adsorption, to the benefit of vaccine formulation.


Assuntos
Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Composição de Medicamentos/métodos , Vacinas/química , Adsorção , Química Farmacêutica , Ligantes , Concentração Osmolar , Ovalbumina/química , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina/química , Albumina Sérica Humana/química
17.
Metallomics ; 12(8): 1267-1277, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32812602

RESUMO

The recalcitrance of pathogenic Mycobacterium tuberculosis, the agent of tuberculosis, to eradication is due to various factors allowing bacteria to escape from stress situations. The mycobacterial chaperone GroEL1, overproduced after macrophage entry and under oxidative stress, could be one of these key players. We previously reported that GroEL1 is necessary for the biosynthesis of phthiocerol dimycocerosate, a virulence-associated lipid and for reducing antibiotic susceptibility. In the present study, we showed that GroEL1, bearing a unique C-terminal histidine-rich region, is required for copper tolerance during Mycobacterium bovis BCG biofilm growth. Mass spectrometry analysis demonstrated that GroEL1 displays high affinity for copper ions, especially at its C-terminal histidine-rich region. Furthermore, the binding of copper protects GroEL1 from destabilization and increases GroEL1 ATPase activity. Altogether, these findings suggest that GroEL1 could counteract copper toxicity, notably in the macrophage phagosome, and further emphasizes that M. tuberculosis GroEL1 could be an interesting antitubercular target.


Assuntos
Cobre/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antineoplásicos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo
18.
Sci Rep ; 10(1): 18123, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093595

RESUMO

Isomerization reactions are fundamental in biology. Lactate racemase, which isomerizes L- and D-lactate, is composed of the LarA protein and a nickel-containing cofactor, the nickel-pincer nucleotide (NPN). In this study, we show that LarA is part of a superfamily containing many different enzymes. We overexpressed and purified 13 lactate racemase homologs, incorporated the NPN cofactor, and assayed the isomerization of different substrates guided by gene context analysis. We discovered two malate racemases, one phenyllactate racemase, one α-hydroxyglutarate racemase, two D-gluconate 2-epimerases, and one short-chain aliphatic α-hydroxyacid racemase among the tested enzymes. We solved the structure of a malate racemase apoprotein and used it, along with the previously described structures of lactate racemase holoprotein and D-gluconate epimerase apoprotein, to identify key residues involved in substrate binding. This study demonstrates that the NPN cofactor is used by a diverse superfamily of α-hydroxyacid racemases and epimerases, widely expanding the scope of NPN-dependent enzymes.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Hidroxiácidos/química , Níquel/metabolismo , Nucleotídeos/metabolismo , Racemases e Epimerases/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Modelos Moleculares , Níquel/química , Nucleotídeos/química , Conformação Proteica , Racemases e Epimerases/química
19.
Nat Commun ; 11(1): 4541, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917884

RESUMO

Study of the interactions established between the viral glycoproteins and their host receptors is of critical importance for a better understanding of virus entry into cells. The novel coronavirus SARS-CoV-2 entry into host cells is mediated by its spike glycoprotein (S-glycoprotein), and the angiotensin-converting enzyme 2 (ACE2) has been identified as a cellular receptor. Here, we use atomic force microscopy to investigate the mechanisms by which the S-glycoprotein binds to the ACE2 receptor. We demonstrate, both on model surfaces and on living cells, that the receptor binding domain (RBD) serves as the binding interface within the S-glycoprotein with the ACE2 receptor and extract the kinetic and thermodynamic properties of this binding pocket. Altogether, these results provide a picture of the established interaction on living cells. Finally, we test several binding inhibitor peptides targeting the virus early attachment stages, offering new perspectives in the treatment of the SARS-CoV-2 infection.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral , Internalização do Vírus , Células A549 , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/metabolismo , Humanos , Modelos Moleculares , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
20.
FEBS Lett ; 594(1): 79-93, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31388991

RESUMO

Phthiocerol dimycocerosates and phenolic glycolipids (PGL) are considered as major virulence elements of Mycobacterium tuberculosis, in particular because of their involvement in cell wall impermeability and drug resistance. The biosynthesis of these waxy lipids involves multiple enzymes, including thioesterase A (TesA). We observed that purified recombinant M. tuberculosis TesA is able to dimerize in the presence of palmitoyl-CoA and our 3D structure model of TesA with this acyl-CoA suggests hydrophobic interaction requirement for dimerization. Furthermore, we identified that methyl arachidonyl fluorophosphonate, which inhibits TesA by covalently modifying the catalytic serine, also displays a synergistic antimicrobial activity with vancomycin further warranting the development of TesA inhibitors as valuable antituberculous drug candidates.


Assuntos
Ácidos Araquidônicos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Organofosfonatos/farmacologia , Tioléster Hidrolases/antagonistas & inibidores , Vancomicina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica , Multimerização Proteica , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA