Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Exp Cell Res ; 401(2): 112527, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33675807

RESUMO

Metastasis is the leading cause of mortality in cancer patients. To migrate to distant sites, cancer cells would need to adapt their behaviour in response to different tissue environments. Thus, it is essential to study this process in models that can closely replicate the tumour microenvironment. Here, we evaluate the use of organotypic liver and brain slices to study cancer metastasis. Morphological and viability parameters of the slices were monitored daily over 3 days in culture to assess their stability as a realistic 3D tissue platform for in vitro metastatic assays. Using these slices, we evaluated the invasion of MDA-MB-231 breast cancer cells and of a subpopulation that was selected for increased motility. We show that the more aggressive invasion of the selected cells likely resulted not only from their lower stiffness, but also from their lower adhesion to the surrounding tissue. Different invasion patterns in the brain and liver slices were observed for both subpopulations. Cells migrated faster in the brain slices (with an amoeboid-like mode) compared to in the liver slices (where they migrated with mesenchymal or collective migration-like modes). Inhibition of the Ras/MAPK/ERK pathway increased cell stiffness and adhesion forces, which resulted in reduced invasiveness. These results illustrate the potential for organotypic tissue slices to more closely mimic in vivo conditions during cancer cell metastasis than most in vitro models.


Assuntos
Neoplasias da Mama/genética , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Microambiente Tumoral/genética , Encéfalo/patologia , Neoplasias da Mama/patologia , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fígado/patologia , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Proteínas ras/genética
2.
J Cell Sci ; 132(11)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31152052

RESUMO

Cancer cells are softer than the normal cells, and metastatic cells are even softer. These changes in biomechanical properties contribute to cancer progression by facilitating cell movement through physically constraining environments. To identify properties that enabled passage through physical constraints, cells that were more efficient at moving through narrow membrane micropores were selected from established cell lines. By examining micropore-selected human MDA MB 231 breast cancer and MDA MB 435 melanoma cancer cells, membrane fluidity and nuclear elasticity were excluded as primary contributors. Instead, reduced actin cytoskeleton anisotropy, focal adhesion density and cell stiffness were characteristics associated with efficient passage through constraints. By comparing transcriptomic profiles between the parental and selected populations, increased Ras/MAPK signalling was linked with cytoskeleton rearrangements and cell softening. MEK inhibitor treatment reversed the transcriptional, cytoskeleton, focal adhesion and elasticity changes. Conversely, expression of oncogenic KRas in parental MDA MB 231 cells, or oncogenic BRaf in parental MDA MB 435 cells, significantly reduced cell stiffness. These results reveal that MAPK signalling, in addition to tumour cell proliferation, has a significant role in regulating cell biomechanics.This article has an associated First Person interview with the first author of the paper.


Assuntos
Citoesqueleto de Actina/fisiologia , Fenômenos Biomecânicos/fisiologia , Movimento Celular/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Melanoma/fisiopatologia , Anisotropia , Linhagem Celular Tumoral , Plasticidade Celular/fisiologia , Proliferação de Células , Adesões Focais/fisiologia , Humanos , Filtros Microporos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
3.
Sensors (Basel) ; 20(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936827

RESUMO

This paper demonstrates how research at the intersection of physics, engineering, biology and medicine can be presented in an interactive and educational way to a non-scientific audience. Interdisciplinary research with a focus on prevalent diseases provides a relatable context that can be used to engage with the public. Respiratory diseases are significant contributors to avoidable morbidity and mortality and have a growing social and economic impact. With the aim of improving lung disease understanding, new techniques in fibre-based optical endomicroscopy have been recently developed. Here, we present a novel engagement activity that resembles a bench-to-bedside pathway. The activity comprises an inexpensive educational tool (<$70) adapted from a clinical optical endomicroscopy system and tutorials that cover state-of-the-art research. The activity was co-created by high school science teachers and researchers in a collaborative way that can be implemented into any engagement development process.


Assuntos
Técnicas Biossensoriais , Comportamento Cooperativo , Fibras Ópticas , Pesquisa Biomédica , Humanos , Pneumopatias/diagnóstico , Microscopia , Pesquisa Translacional Biomédica
4.
Biomed Microdevices ; 19(4): 81, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28884359

RESUMO

Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.


Assuntos
Citocalasina D/farmacologia , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Imagem Óptica , Osteossarcoma , Resistência ao Cisalhamento , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Humanos , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Osteossarcoma/metabolismo , Osteossarcoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA