Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Vib Spectrosc ; 91: 77-82, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28781430

RESUMO

Fourier transform infrared (FT-IR) microscopy was used to image tissue samples from twenty patients diagnosed with thyroid carcinoma. The spectral data were then used to differentiate between follicular thyroid carcinoma and follicular variant of papillary thyroid carcinoma using principle component analysis coupled with linear discriminant analysis and a Naïve Bayesian classifier operating on a set of computed spectral metrics. Classification of patients' disease type was accomplished by using average spectra from a wide region containing follicular cells, colloid, and fibrosis; however, classification of disease state at the pixel level was only possible when the extracted spectra were limited to follicular epithelial cells in the samples, excluding the relatively uninformative areas of fibrosis. The results demonstrate the potential of FT-IR microscopy as a tool to assist in the difficult diagnosis of these subtypes of thyroid cancer, and also highlights the importance of selectively and separately analyzing spectral information from different features of a tissue of interest.

3.
Biomed Opt Express ; 11(7): 3996-4007, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014581

RESUMO

Tissue fibrosis is a progressive and destructive disease process that can occur in many different organs including the liver, kidney, skin, and lungs. Fibrosis is typically initiated by inflammation as a result of chronic insults such as infection, chemicals and autoimmune diseases. Current approaches to examine organ fibrosis are limited to radiological and histological analyses. Infrared spectroscopic imaging offers a potential alternative approach to gain insight into biochemical changes associated with fibrosis progression. In this study, we demonstrate that IR imaging of a mouse model of pulmonary fibrosis can identify biochemical changes observed with fibrosis progression and the beginning of resolution using K-means analysis, spectral ratios and multivariate data analysis. This study demonstrates that IR imaging may be a useful approach to understand the biochemical events associated with fibrosis initiation, progression and resolution for both the clinical setting and for assessing novel anti-fibrotic drugs in a model system.

4.
Transplantation ; 103(4): 698-704, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30278018

RESUMO

BACKGROUND: Antibody-mediated rejection (AMR) in cardiac allograft recipients remains less well-understood than acute cellular rejection, is associated with worse outcomes, and portends a greater risk of developing chronic allograft vasculopathy. Diffuse immunohistochemical C4d staining of capillary endothelia in formalin-fixed, paraffin-embedded right ventricular endomyocardial biopsies is diagnostic of immunopathologic AMR but serves more as a late-stage marker. Infrared (IR) spectroscopy may be a useful tool in earlier detection of rejection. We performed mid-IR spectroscopy to identify a unique biochemical signature for AMR. METHODS: A total of 30 posttransplant formalin-fixed paraffin-embedded right ventricular tissue biopsies (14 positive for C4d and 16 negative for C4d) and 14 native heart biopsies were sectioned for IR analysis. Infrared images of entire sections were acquired and regions of interest from cardiomyocytes were identified. Extracted spectra were averaged across many pixels within each region of interest. Principal component analysis coupled with linear discriminant analysis and predictive classifiers were applied to the data. RESULTS: Comparison of averaged mid-IR spectra revealed unique features among C4d-positive, C4d-negative, and native heart biopsies. Principal component analysis coupled with linear discriminant analysis and classification models demonstrated that spectral features from the mid-IR fingerprint region of these 3 groups permitted accurate automated classification into each group. CONCLUSIONS: In cardiac allograft biopsies with immunopathologic AMR, IR spectroscopy reveals a biochemical signature unique to AMR compared with that of nonrejecting cardiac allografts and native hearts. Future study will focus on the predictive capabilities of this IR signature.


Assuntos
Rejeição de Enxerto/etiologia , Transplante de Coração/efeitos adversos , Miocárdio/patologia , Espectrofotometria Infravermelho/métodos , Adulto , Idoso , Anticorpos/imunologia , Biópsia , Complemento C4b/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/análise
5.
IEEE Trans Med Imaging ; 38(5): 1304-1313, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30489266

RESUMO

Hyperspectral imaging (HSI) of tissue samples in the mid-infrared (mid-IR) range provides spectro-chemical and tissue structure information at sub-cellular spatial resolution. Disease states can be directly assessed by analyzing the mid-IR spectra of different cell types (e.g., epithelial cells) and sub-cellular components (e.g., nuclei), provided that we can accurately classify the pixels belonging to these components. The challenge is to extract information from hundreds of noisy mid-IR bands at each pixel, where each band is not very informative in itself, making annotations of unstained tissue HSI images particularly tricky. Because the tissue structure is not necessarily identical between the two sections, only a few regions in unstained HSI image can be annotated with high confidence, even when serial (or adjacent) hematoxylin and eosin stained section is used as a visual guide. In order to completely use both labeled and unlabeled pixels in training images, we have developed an HSI pixel classification method that uses semi-supervised learning for both spectral dimension reduction and hierarchical pixel clustering. Compared to the supervised classifiers, the proposed method was able to account for the vast differences in the spectra of sub-cellular components of the same cell type and to achieve an F1 score of 71.18% on twofold cross-validation across 20 tissue images. To generate further interest in this promising modality, we have released our source code and also showed that disease classification is straightforward after HSI image segmentation.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Espectrofotometria Infravermelho/métodos , Aprendizado de Máquina Supervisionado , Análise por Conglomerados , Colo/diagnóstico por imagem , Doenças do Colo/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/métodos
6.
Nat Protoc ; 14(5): 1546-1577, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953040

RESUMO

Spectroscopic techniques such as Fourier-transform infrared (FTIR) spectroscopy are used to study interactions of light with biological materials. This interaction forms the basis of many analytical assays used in disease screening/diagnosis, microbiological studies, and forensic/environmental investigations. Advantages of spectrochemical analysis are its low cost, minimal sample preparation, non-destructive nature and substantially accurate results. However, an urgent need exists for repetition and validation of these methods in large-scale studies and across different research groups, which would bring the method closer to clinical and/or industrial implementation. For this to succeed, it is important to understand and reduce the effect of random spectral alterations caused by inter-individual, inter-instrument and/or inter-laboratory variations, such as variations in air humidity and CO2 levels, and aging of instrument parts. Thus, it is evident that spectral standardization is critical to the widespread adoption of these spectrochemical technologies. By using calibration transfer procedures, in which the spectral response of a secondary instrument is standardized to resemble the spectral response of a primary instrument, different sources of variation can be normalized into a single model using computational-based methods, such as direct standardization (DS) and piecewise direct standardization (PDS); therefore, measurements performed under different conditions can generate the same result, eliminating the need for a full recalibration. Here, we have constructed a protocol for model standardization using different transfer technologies described for FTIR spectrochemical applications. This is a critical step toward the construction of a practical spectrochemical analysis model for daily routine analysis, where uncertain and random variations are present.


Assuntos
Bases de Dados Factuais/normas , Espectroscopia de Infravermelho com Transformada de Fourier/normas , Pesquisa Biomédica , Células Cultivadas , Técnicas de Laboratório Clínico , Humanos , Análise de Componente Principal
7.
Int J Biochem Cell Biol ; 92: 14-17, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28888785

RESUMO

Infrared spectroscopic tissue imaging is a potentially powerful adjunct tool to current histopathology techniques. By coupling the biochemical signature obtained through infrared spectroscopy to the spatial information offered by microscopy, this technique can selectively analyze the chemical composition of different features of unlabeled, unstained tissue sections. In the past, the tissue features that have received the most interest were parenchymal and epithelial cells, chiefly due to their involvement in dysplasia and progression to carcinoma; however, the field has recently turned its focus toward stroma and areas of fibrotic change. These components of tissue present an untapped source of biochemical information that can shed light on many diverse disease processes, and potentially hold useful predictive markers for these same pathologies. Here we review the recent applications of infrared spectroscopic imaging to stromal and fibrotic regions of diseased tissue, and explore the potential of this technique to advance current capabilities for tissue analysis.


Assuntos
Fibrose/diagnóstico por imagem , Fibrose/metabolismo , Imagem Molecular/métodos , Espectrofotometria Infravermelho/métodos , Animais , Humanos , Imagem Molecular/instrumentação , Espectrofotometria Infravermelho/instrumentação
8.
Biomed Opt Express ; 7(6): 2419-24, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27375956

RESUMO

The importance of stroma as a rich diagnostic region in tissue biopsies is growing as there is an increasing understanding that disease processes in multiple organs can affect the composition of adjacent connective tissue regions. This may be especially true in the liver, since this organ's central metabolic role exposes it to multiple disease processes. We use quantum cascade laser infrared spectroscopic imaging to study changes in the chemical status of hepatocytes and fibrotic regions of liver tissue that result from the progression of liver cirrhosis to hepatocellular carcinoma and the potentially confounding effects of diabetes mellitus.

9.
J Vis Exp ; (95): 52332, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25650759

RESUMO

High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis.


Assuntos
Rim/patologia , Fígado/patologia , Patologia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Diagnóstico por Imagem/métodos , Análise de Fourier , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA