Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 212(2): 302-316, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38019129

RESUMO

Immune cell-derived IL-17A is one of the key pathogenic cytokines in psoriasis, an immunometabolic disorder. Although IL-17A is an established regulator of cutaneous immune cell biology, its functional and metabolic effects on nonimmune cells of the skin, particularly keratinocytes, have not been comprehensively explored. Using multiomics profiling and systems biology-based approaches, we systematically uncover significant roles for IL-17A in the metabolic reprogramming of human primary keratinocytes (HPKs). High-throughput liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance spectroscopy revealed IL-17A-dependent regulation of multiple HPK proteins and metabolites of carbohydrate and lipid metabolism. Systems-level MitoCore modeling using flux-balance analysis identified IL-17A-mediated increases in HPK glycolysis, glutaminolysis, and lipid uptake, which were validated using biochemical cell-based assays and stable isotope-resolved metabolomics. IL-17A treatment triggered downstream mitochondrial reactive oxygen species and HIF1α expression and resultant HPK proliferation, consistent with the observed elevation of these downstream effectors in the epidermis of patients with psoriasis. Pharmacological inhibition of HIF1α or reactive oxygen species reversed IL-17A-mediated glycolysis, glutaminolysis, lipid uptake, and HPK hyperproliferation. These results identify keratinocytes as important target cells of IL-17A and reveal its involvement in multiple downstream metabolic reprogramming pathways in human skin.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Interleucina-17 , Reprogramação Metabólica , Psoríase , Espécies Reativas de Oxigênio , Células Cultivadas , Humanos , Interleucina-17/metabolismo , Reprogramação Metabólica/genética , Espécies Reativas de Oxigênio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Queratinócitos/citologia , Proliferação de Células/genética , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Regulação para Cima , Metabolismo dos Lipídeos , Psoríase/genética , Psoríase/metabolismo
2.
Mol Cell Proteomics ; 22(1): 100478, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470533

RESUMO

To date, very few mass spectrometry (MS)-based proteomics studies are available on the anterior and posterior lobes of the pituitary. In the past, MS-based investigations have focused exclusively on the whole pituitary gland or anterior pituitary lobe. In this study, for the first time, we performed a deep MS-based analysis of five anterior and five posterior matched lobes to build the first lobe-specific pituitary proteome map, which documented 4090 proteins with isoforms, mostly mapped into chromosomes 1, 2, and 11. About 1446 differentially expressed significant proteins were identified, which were studied for lobe specificity, biological pathway enrichment, protein-protein interaction, regions specific to comparison of human brain and other neuroendocrine glands from Human Protein Atlas to identify pituitary-enriched proteins. Hormones specific to each lobe were also identified and validated with parallel reaction monitoring-based target verification. The study identified and validated hormones, growth hormone and thyroid-stimulating hormone subunit beta, exclusively to the anterior lobe whereas oxytocin-neurophysin 1 and arginine vasopressin to the posterior lobe. The study also identified proteins POU1F1 (pituitary-specific positive transcription factor 1), POMC (pro-opiomelanocortin), PCOLCE2 (procollagen C-endopeptidase enhancer 2), and NPTX2 (neuronal pentraxin-2) as pituitary-enriched proteins and was validated for their lobe specificity using parallel reaction monitoring. In addition, three uPE1 proteins, namely THEM6 (mesenchymal stem cell protein DSCD75), FSD1L (coiled-coil domain-containing protein 10), and METTL26 (methyltransferase-like 26), were identified using the NeXtProt database, and depicted tumor markers S100 proteins having high expression in the posterior lobe. In summary, the study documents the first matched anterior and posterior pituitary proteome map acting as a reference control for a better understanding of functional and nonfunctional pituitary adenomas and extrapolating the aim of the Human Proteome Project towards the investigation of the proteome of life.


Assuntos
Adeno-Hipófise , Neuro-Hipófise , Humanos , Proteoma/metabolismo , Adeno-Hipófise/metabolismo , Hipófise/metabolismo , Neuro-Hipófise/metabolismo
3.
J Proteome Res ; 22(6): 1816-1827, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37093804

RESUMO

Equipped with a dramatically high mutation rate, which happens to be a signature of RNA viruses, SARS-CoV-2 trampled across the globe infecting individuals of all ages and ethnicities. As the variants of concern (VOC) loomed large, definitive detection of SARS-CoV-2 strains became a matter of utmost importance in epidemiological and clinical research. Besides, unveiling the disease pathogenesis at the molecular level and deciphering the therapeutic targets became key priorities since the emergence of the pandemic. Mass spectrometry has been largely used in this regard. A critical part of mass spectrometric analyses is the proteome database required for the identification of peptides. Presently, the mutational information on proteins available on SARS-CoV-2 databases cannot be used to analyze data extracted from mass spectrometers. Hence, we developed the novel Mutant Peptide Database (MPD) for the mass spectrometry (MS)-based identification of mutated peptides, which contains information from 11 proteins of SARS-CoV-2 from a total of 21,549 SARS-CoV-2 variants across different regions of India. The database was validated using clinical samples, and its applicability was also demonstrated with the mutated peptides extracted from the literature. We believe that MPD will support broad-spectrum MS-based studies like viral detection, disease pathogenesis, and therapeutics with respect to SARS-CoV-2 and its variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Espectrometria de Massas/métodos , Peptídeos/genética
4.
J Proteome Res ; 22(3): 871-884, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731020

RESUMO

Despite recent advancements, the high mortality rate remains a concern in colon cancer (CAC). Identification of therapeutic markers could prove to be a great asset in CAC management. Multiple studies have reported hyperactivation of de novo lipogenesis (DNL), but its association with the pathology is unclear. This study aims to establish the importance as well as the prognostic and therapeutic potential of DNL in CAC. The key lipogenic enzymes fatty acid synthase along with ATP citrate lyase were quantified using an LC-MS/MS-based targeted proteomics approach in the samples along with the matched controls. The potential capacity of the proteins to distinguish between the tumor and controls was demonstrated using random forest-based class prediction analysis using the peptide intensities. Furthermore, in-depth proteomics of DNL inhibition in the CAC cell line revealed the significance of the pathway in proliferation and metastasis. DNL inhibition affected the major signaling pathways, including DNA repair, PI3K-AKT-mTOR pathway, membrane trafficking, proteasome, etc. The study revealed the upregulation of 26S proteasome machinery as a result of the treatment with subsequent induction of apoptosis. Again, in silico molecular docking-based drug repurposing was performed to find potential drug candidates. Furthermore, we have demonstrated that blocking DNL could be explored as a therapeutic option in CAC treatment.


Assuntos
Neoplasias do Colo , Proteômica , Humanos , Prognóstico , Cromatografia Líquida , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Espectrometria de Massas em Tandem , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética
5.
J Proteome Res ; 22(8): 2608-2619, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37450889

RESUMO

During the COVID-19 pandemic, impaired immunity and medical interventions resulted in cases of secondary infections. The clinical difficulties and dangers associated with secondary infections in patients necessitate the exploration of their microbiome. Metaproteomics is a powerful approach to study the taxonomic composition and functional status of the microbiome under study. In this study, the mass spectrometry (MS)-based data of nasopharyngeal swab samples from COVID-19 patients was used to investigate the metaproteome. We have established a robust bioinformatics workflow within the Galaxy platform, which includes (a) generation of a tailored database of the common respiratory tract pathogens, (b) database search using multiple search algorithms, and (c) verification of the detected microbial peptides. The microbial peptides detected in this study, belong to several opportunistic pathogens such as Streptococcus pneumoniae, Klebsiella pneumoniae, Rhizopus microsporus, and Syncephalastrum racemosum. Microbial proteins with a role in stress response, gene expression, and DNA repair were found to be upregulated in severe patients compared to negative patients. Using parallel reaction monitoring (PRM), we confirmed some of the microbial peptides in fresh clinical samples. MS-based clinical metaproteomics can serve as a powerful tool for detection and characterization of potential pathogens, which can significantly impact the diagnosis and treatment of patients.


Assuntos
COVID-19 , Coinfecção , Humanos , COVID-19/diagnóstico , Pandemias , Peptídeos , Nasofaringe
6.
J Proteome Res ; 22(4): 1043-1055, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36317652

RESUMO

Post-translational modifications (PTMs) are one of the compulsive and predominant biological processes that regulate the diverse molecular mechanism, modulate the onset of disease, and are the reason behind the functional diversity of proteins. Despite the widespread research findings in neuroproteomics, one of the key drawbacks has been the lack of proteome-level knowledge of hemispheric lateralization. We have investigated the proteome level expression in different neuroanatomical regions under the Human Brain Proteome Project (HBPP) and developed the global interhemispheric brain proteome map (Brainprot) earlier. Furthermore, this study has extended to decipher the phosphoproteome map of human brain interhemispheric regions through high-resolution mass spectrometry. The phosphoproteomics examination of 12 unique interhemispheric neurological brain regions using Orbitrap fusion liquid chromatography with tandem mass spectrometry provided comprehensive coverage of 996 phosphoproteins, 2010 phosphopeptides, and 3567 phosphosites. Moreover, interhemispheric phosphoproteome profiling has been categorized according to synaptic ontologies and interhemispheric expression to understand the functionality. Finally, we have integrated the phosphosites data under the PhosphoMap section in the Inter-Hemispheric Brain Proteome Map Portal (https://www.brainprot.org/) for the advancement and support of the ongoing neuroproteomics research worldwide. Data is available via ProteomeXchange with the identifier PXD031188.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/genética , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Processamento de Proteína Pós-Traducional , Encéfalo/metabolismo , Fosfoproteínas/metabolismo , Fosfopeptídeos/análise
7.
Expert Rev Proteomics ; 20(12): 381-395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970632

RESUMO

INTRODUCTION: Brain tumors are complex and heterogeneous malignancies with significant challenges in diagnosis, prognosis, and therapy. Proteomics, the large-scale study of proteins and their functions, has emerged as a powerful tool to comprehensively investigate the molecular mechanisms underlying brain tumor regulation. AREAS COVERED: This review explores brain tumors from a proteomic standpoint, highlighting recent progress and insights gained through proteomic methods. It delves into the proteomic techniques employed and underscores potential biomarkers for early detection, prognosis, and treatment planning. Recent PubMed Central proteomic studies (2017-present) are discussed, summarizing findings on altered protein expression, post-translational changes, and protein interactions. This sheds light on brain tumor signaling pathways and their significance in innovative therapeutic approaches. EXPERT OPINION: Proteomics offers immense potential for revolutionizing brain tumor diagnosis and therapy. To unlock its full benefits, further translational research is crucial. Combining proteomics with other omics data enhances our grasp of brain tumors. Validating and translating proteomic biomarkers are vital for better patient results. Challenges include tumor complexity, lack of curated proteomic databases, and the need for collaboration between researchers and clinicians. Overcoming these challenges requires investment in technology, data sharing, and translational research.


Brain tumors are complex and diverse types of cancer that present significant challenges in their diagnosis, prognosis, and treatment. Proteomics, a field that focuses on studying proteins and their functions on a large scale has emerged as a powerful tool for understanding how brain tumors work at the molecular level. In this review, we offer a detailed look into the role of proteomics in studying brain tumor regulation, discussing recent advancements and insights gained from proteomic techniques. We explore various mass spectrometry-based proteomic methods, which help uncover unique protein patterns associated with brain tumors. By analyzing changes in protein expression, modifications, interactions, and location within cells, researchers have gained important knowledge about the underlying mechanisms of brain tumors. Proteomics also plays a crucial role in identifying potential biomarkers for early detection, predicting patient outcomes, and developing targeted therapies and immunotherapies. However, there are still challenges to overcome, such as integrating data from different 'omics' fields, standardizing protocols and analysis procedures and utilizing artificial intelligence to interpret complex proteomic data. We require more robust attempts at validating and translating all these findings for patient benefit.


Assuntos
Neoplasias Encefálicas , Proteômica , Humanos , Proteômica/métodos , Proteoma/genética , Prognóstico , Biomarcadores/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia
8.
Clin Proteomics ; 20(1): 41, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37770851

RESUMO

BACKGROUND: Meningiomas are the most prevalent primary brain tumors. Due to their increasing burden on healthcare, meningiomas have become a pivot of translational research globally. Despite many studies in the field of discovery proteomics, the identification of grade-specific markers for meningioma is still a paradox and requires thorough investigation. The potential of the reported markers in different studies needs further verification in large and independent sample cohorts to identify the best set of markers with a better clinical perspective. METHODS: A total of 53 fresh frozen tumor tissue and 51 serum samples were acquired from meningioma patients respectively along with healthy controls, to validate the prospect of reported differentially expressed proteins and claimed markers of Meningioma mined from numerous manuscripts and knowledgebases. A small subset of Glioma/Glioblastoma samples were also included to investigate inter-tumor segregation. Furthermore, a simple Machine Learning (ML) based analysis was performed to evaluate the classification accuracy of the list of proteins. RESULTS: A list of 15 proteins from tissue and 12 proteins from serum were found to be the best segregator using a feature selection-based machine learning strategy with an accuracy of around 80% in predicting low grade (WHO grade I) and high grade (WHO grade II and WHO grade III) meningiomas. In addition, the discriminant analysis could also unveil the complexity of meningioma grading from a segregation pattern, which leads to the understanding of transition phases between the grades. CONCLUSIONS: The identified list of validated markers could play an instrumental role in the classification of meningioma as well as provide novel clinical perspectives in regard to prognosis and therapeutic targets.

9.
Adv Exp Med Biol ; 1412: 175-195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378767

RESUMO

Maharashtra was severely affected during the noxious second wave of COVID-19, with the highest number of cases recorded across India. The emergence of new symptoms and dysregulation of multiple organs resulted in high disease severity during the second wave which led to increased difficulties in understanding the molecular mechanisms behind the disease pathology. Exploring the underlying factors can help to relieve the burden on the medical communities to some extent by prioritizing the patients and, at the same time, opening avenues for improved treatments. In the current study, we have performed a mass-spectrometry-based proteomic analysis to investigate the disease pathology using nasopharyngeal swab samples collected from the COVID-19 patients in the Mumbai region of Maharashtra over the period of March-June 2021, the peak of the second wave. A total of 59 patients, including 32 non-severe and 27 severe cases, were considered for this proteomic study. We identified 23 differentially regulated proteins in severe patients as a host response to infection. In addition to the previously identified innate mechanisms of neutrophil and platelet degranulation, this study revealed significant alterations of anti-microbial peptide pathways in severe conditions, illustrating its role in the severity of the infectious strain of COVID-19 during the second wave. Furthermore, myeloperoxidase, cathepsin G, and profilin-1 were identified as potential therapeutic targets of the FDA-approved drugs dabrafenib, ZINC4097343, and ritonavir. This study has enlightened the role of the anti-microbial peptide pathway associated with the second wave in India and proposed its importance in potential therapeutics for COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteômica/métodos , Índia/epidemiologia , Ritonavir
10.
J Proteome Res ; 21(2): 420-437, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34962809

RESUMO

Proteomics has enormous applications in human and animal research. However, proteomic studies in fisheries science are quite scanty particularly for economically important species. Few proteomic studies have been carried out in model fish species, but comprehensive proteomics of aquaculture species are still scarce. This study aimed to perform a comprehensive organ-based protein profiling of important tissue samples for one of the most important aquaculture species,Labeo rohita.Deep proteomic profiling of 17 histologically normal tissues, blood plasma, and embryo provided mass-spectrometric evidence for 8498 proteins at 1% false discovery rate that make up about 26% of the total annotated protein-coding sequences in Rohu. Tissue-wise expression analysis was performed, and the presence of several biologically important proteins was also verified using a targeted proteomic approach. We identified the global post-translational modifications (PTMs) in terms of acetylation (N-terminus and lysine), methylation (N-terminus, lysine, and arginine), and phosphorylation (serine, threonine, and tyrosine) to present a comprehensive proteome resource. An interactive web-based portal has been developed for an overall landscape of protein expression across the studied tissues of Labeo rohita (www.fishprot.org). This draft proteome map of Labeo rohita would advance basic and applied research in aquaculture to meet the most critical challenge of providing food and nutritional security to an increasing world population.


Assuntos
Cyprinidae , Proteoma , Animais , Cyprinidae/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica , Água/metabolismo
11.
Anal Chem ; 94(34): 11898-11907, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35980087

RESUMO

To date, no studies are available in which pituitary adenomas (PAs) have been studied using techniques like confocal Raman spectroscopy, attenuated total reflection-Fourier transform infrared (FT-IR), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the same serum samples. To understand the metabolomics fingerprint, Raman spectra of 16 acromegaly, 19 Cushing's, and 33 nonfunctional PA (NFPA) and ATR-FTIR spectral acquisition of 16 acromegaly, 18 Cushing's, and 22 NFPA patient's serum samples were acquired. Next, Principal component-based linear discriminant analysis (PC-LDA) models were developed, Raman spectral analysis classified acromegaly with an accuracy of 79.17%, sensitivity of 75%, and specificity of 81.25%, Cushing's with an accuracy of 66.67%, sensitivity of 100%, and specificity of 52.63%, and NFPA with an accuracy of 73.17%, sensitivity of 75%, and specificity of 72.73%. ATR-FTIR spectral analysis classified acromegaly with an accuracy of 95.83%, sensitivity of 100%, and specificity of 93.75%, Cushing's with an accuracy of 65.38%, sensitivity of 87.5%, and specificity of 55.56%, and NFPA with an accuracy of 70%, sensitivity of 87.5%, and specificity of 43.75%. In either of the cases, healthy individual cohorts were clearly segregated from the disease cohort, which identified differential regulated regions of nucleic acids, lipids, amides, phosphates, and polysaccharide/C-C residue α helix regions. Furthermore, LC-MS/MS-based analysis of sera samples resulted in the identification of various sphingosine, lipids, acylcarnitines, amino acids, ethanolamine, choline, and their derivatives that differentially regulated in each tumor cohort. We believe cues obtained from the study may be used to generate the metabolite-based test to diagnose PAs from serum in addition to conventional techniques and also to understand disease biology for better disease management, point of care, and improving quality of life in PA patients.


Assuntos
Acromegalia , Neoplasias Hipofisárias , Cromatografia Líquida , Humanos , Lipídeos , Neoplasias Hipofisárias/diagnóstico , Qualidade de Vida , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman , Espectrometria de Massas em Tandem
12.
Expert Rev Proteomics ; 19(3): 197-212, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35655386

RESUMO

INTRODUCTION: The challenges posed by emergent strains of SARS-CoV-2 need to be tackled by contemporary scientific approaches, with proteomics playing a significant role. AREAS COVERED: In this review, we provide a brief synthesis of the impact of proteomics technologies in elucidating disease pathogenesis and classifiers for the prognosis of COVID-19 and propose proteomics methodologies that could play a crucial role in understanding emerging variants and their altered disease pathology. From aiding the design of novel drug candidates to facilitating the identification of T cell vaccine targets, we have discussed the impact of proteomics methods in COVID-19 research. Techniques varied as mass spectrometry, single-cell proteomics, multiplexed ELISA arrays, high-density proteome arrays, surface plasmon resonance, immunopeptidomics, and in silico docking studies that have helped augment the fight against existing diseases were useful in preparing us to tackle SARS-CoV-2 variants. We also propose an action plan for a pipeline to combat emerging pandemics using proteomics technology by adopting uniform standard operating procedures and unified data analysis paradigms. EXPERT OPINION: The knowledge about the use of diverse proteomics approaches for COVID-19 investigation will provide a framework for future basic research, better infectious disease prevention strategies, improved diagnostics, and targeted therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Proteômica/métodos , Proteoma/genética
13.
J Proteome Res ; 20(2): 1107-1132, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33426872

RESUMO

Human infectious diseases are contributed equally by the host immune system's efficiency and any pathogens' infectivity. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the coronavirus strain causing the respiratory pandemic coronavirus disease 2019 (COVID-19). To understand the pathobiology of SARS-CoV-2, one needs to unravel the intricacies of host immune response to the virus, the viral pathogen's mode of transmission, and alterations in specific biological pathways in the host allowing viral survival. This review critically analyzes recent research using high-throughput "omics" technologies (including proteomics and metabolomics) on various biospecimens that allow an increased understanding of the pathobiology of SARS-CoV-2 in humans. The altered biomolecule profile facilitates an understanding of altered biological pathways. Further, we have performed a meta-analysis of significantly altered biomolecular profiles in COVID-19 patients using bioinformatics tools. Our analysis deciphered alterations in the immune response, fatty acid, and amino acid metabolism and other pathways that cumulatively result in COVID-19 disease, including symptoms such as hyperglycemic and hypoxic sequelae.


Assuntos
COVID-19/prevenção & controle , Metabolômica/métodos , Proteômica/métodos , SARS-CoV-2/metabolismo , COVID-19/epidemiologia , COVID-19/virologia , Interações Hospedeiro-Patógeno , Humanos , Pandemias , SARS-CoV-2/fisiologia
14.
J Proteome Res ; 20(10): 4667-4680, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34379420

RESUMO

Severe coronavirus disease 2019 (COVID-19) infection may lead to lung injury, multi-organ failure, and eventually death. Cytokine storm due to excess cytokine production has been associated with fatality in severe infections. However, the specific molecular signatures associated with the elevated immune response are yet to be elucidated. We performed a mass-spectrometry-based proteomic and metabolomic analysis of COVID-19 plasma samples collected at two time points. Using Orbitrap Fusion LC-MS/MS-based label-free proteomic analysis, we identified around 10 significant proteins, 32 significant peptides, and 5 metabolites that were dysregulated at the severe time points. Few of these proteins identified by quantitative proteomics were validated using the multiple reaction monitoring (MRM) assay. Integrated pathway analysis using distinct proteomic and metabolomic signatures revealed alterations in complement and coagulation cascade, platelet aggregation, myeloid leukocyte activation pathway, and arginine metabolism. Further, we highlight the role of leukocyte activation and arginine metabolism in COVID-19 pathogenesis and targeting these pathways for COVID-19 therapeutics.


Assuntos
COVID-19 , Proteômica , Cromatografia Líquida , Humanos , Leucócitos , Estudos Longitudinais , SARS-CoV-2 , Espectrometria de Massas em Tandem
15.
J Proteome Res ; 20(12): 5280-5293, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34714085

RESUMO

This study, which performs an extensive mass spectrometry-based analysis of 19 brain regions from both left and right hemispheres, presents the first draft of the human brain interhemispheric proteome. This high-resolution proteomics data provides comprehensive coverage of 3300 experimentally measured (nonhypothetical) proteins across multiple regions, allowing the characterization of protein-centric interhemispheric differences and synapse biology, and portrays the regional mapping of specific regions for brain disorder biomarkers. In the context of the Human Proteome Project (HPP), the interhemispheric proteome data reveal specific markers like chimerin 2 (CHN2) in the cerebellar vermis, olfactory marker protein (OMP) in the olfactory bulb, and ankyrin repeat domain 63 (ANKRD63) in basal ganglia, in line with regional brain transcriptomes mapped in the Human Protein Atlas (HPA). In addition, an in silico analysis pipeline was used to predict the structure and function of the uncharacterized uPE1 protein ANKRD63, and parallel reaction monitoring (PRM) was applied to validate its region-specific expression. Finally, we have built the Interhemispheric Brain Proteome Map (IBPM) Portal (www.brainprot.org) to stimulate the scientific community's interest in the brain molecular landscape and accelerate and support research in neuroproteomics. Data are available via ProteomeXchange with identifier PXD019936.


Assuntos
Proteoma , Proteômica , Biomarcadores , Encéfalo , Humanos , Espectrometria de Massas , Proteoma/genética
16.
Anal Chem ; 93(30): 10391-10396, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279898

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic continues to ravage the world, with many hospitals overwhelmed by the large number of patients presenting during major outbreaks. A rapid triage for COVID-19 patient requiring hospitalization and intensive care is urgently needed. Age and comorbidities have been associated with a higher risk of severe COVID-19 but are not sufficient to triage patients. Here, we investigated the potential of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy as a rapid blood test for classification of COVID-19 disease severity using a cohort of 160 COVID-19 patients. A simple plasma processing and ATR-FTIR data acquisition procedure was established using 75% ethanol for viral inactivation. Next, partial least-squares-discriminant analysis (PLS-DA) models were developed and tested using data from 130 and 30 patients, respectively. Addition of the ATR-FTIR spectra to the clinical parameters (age, sex, diabetes mellitus, and hypertension) increased the area under the ROC curve (C-statistics) for both the training and test data sets, from 69.3% (95% CI 59.8-78.9%) to 85.7% (78.6-92.8%) and 77.8% (61.3-94.4%) to 85.1% (71.3-98.8%), respectively. The independent test set achieved 69.2% specificity (42.4-87.3%) and 94.1% sensitivity (73.0-99.0%). Diabetes mellitus was the strongest predictor in the model, followed by FTIR regions 1020-1090 and 1588-1592 cm-1. In summary, this study demonstrates the potential of ATR-FTIR spectroscopy as a rapid, low-cost COVID-19 severity triage tool to facilitate COVID-19 patient management during an outbreak.


Assuntos
COVID-19 , Proteínas Mutadas de Ataxia Telangiectasia , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , SARS-CoV-2 , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Expert Rev Proteomics ; 18(8): 643-659, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34517741

RESUMO

INTRODUCTION: With available genomic data and related information, it is becoming possible to better highlight mutations or genomic alterations associated with a particular disease or disorder. The advent of high-throughput sequencing technologies has greatly advanced diagnostics, prognostics, and drug development. AREAS COVERED: Peptidomics and proteogenomics are the two post-genomic technologies that enable the simultaneous study of peptides and proteins/transcripts/genes. Both technologies add a remarkably large amount of data to the pool of information on various peptides associated with gene mutations or genome remodeling. Literature search was performed in the PubMed database and is up to date. EXPERT OPINION: This article lists various techniques used for peptidomic and proteogenomic analyses. It also explains various bioinformatics workflows developed to understand differentially expressed peptides/proteins and their role in disease pathogenesis. Their role in deciphering disease pathways, cancer research, and biomarker discovery using biofluids is highlighted. Finally, the challenges and future requirements to overcome the current limitations for their effective clinical use are also discussed.


Assuntos
Proteogenômica , Biologia Computacional , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos
18.
Drug Discov Today Technol ; 39: 69-79, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34906327

RESUMO

The field of proteomics immensely depends on data generation and data analysis which are thoroughly supported by software and databases. There has been a massive advancement in mass spectrometry-based proteomics over the last 10 years which has compelled the scientific community to upgrade or develop algorithms, tools, and repository databases in the field of proteomics. Several standalone software, and comprehensive databases have aided the establishment of integrated omics pipeline and meta-analysis workflow which has contributed to understand the disease pathobiology, biomarker discovery and predicting new therapeutic modalities. For shotgun proteomics where Data Dependent Acquisition is performed, several user-friendly software are developed that can analyse the pre-processed data to provide mechanistic insights of the disease. Likewise, in Data Independent Acquisition, pipelines are emerged which can accomplish the task from building the spectral library to identify the therapeutic targets. Furthermore, in the age of big data analysis the implications of machine learning and cloud computing are appending robustness, rapidness and in-depth proteomics data analysis. The current review talks about the recent advancement, and development of software, tools, and database in the field of mass-spectrometry based proteomics.


Assuntos
Proteômica , Software , Algoritmos , Bases de Dados Factuais , Bases de Dados de Proteínas , Espectrometria de Massas
19.
Drug Discov Today Technol ; 39: 1-12, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34906319

RESUMO

Standing amidst the COVID-19 pandemic, we have faced major medical and economic crisis in recent times which remains to be an unresolved issue till date. Although the scientific community has made significant progress towards diagnosis and understanding the disease; however, effective therapeutics are still lacking. Several omics-based studies, especially proteomics and interactomics, have contributed significantly in terms of identifying biomarker panels that can potentially be used for the disease prognosis. This has also paved the way to identify the targets for drug repurposing as a therapeutic alternative. US Food and Drug Administration (FDA) has set in motion more than 500 drug development programs on an emergency basis, most of them are focusing on repurposed drugs. Remdesivir is one such success of a robust and quick drug repurposing approach. The advancements in omics-based technologies has allowed to explore altered host proteins, which were earlier restricted to only SARS-CoV-2 protein signatures. In this article, we have reviewed major contributions of proteomics and interactomics techniques towards identifying therapeutic targets for COVID-19. Furthermore, in-silico molecular docking approaches to streamline potential drug candidates are also discussed.


Assuntos
COVID-19 , Reposicionamento de Medicamentos , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , Pandemias , Proteômica , SARS-CoV-2
20.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008477

RESUMO

Understanding transient protein interactions biochemically at the proteome scale remains a long-standing challenge. Current tools developed to study protein interactions in high-throughput measure stable protein complexes and provide binary readouts; they do not elucidate dynamic and weak protein interactions in a proteome. The majority of protein interactions are transient and cover a wide range of affinities. Nucleic acid programmable protein arrays (NAPPA) are self-assembling protein microarrays produced by freshly translating full-length proteins in situ on the array surface. Herein, we have coupled NAPPA to surface plasmon resonance imaging (SPRi) to produce a novel label-free platform that measures many protein interactions in real-time allowing the determination of the KDs and rate constants. The developed novel NAPPA-SPRi technique showed excellent ability to study protein-protein interactions of clinical mutants of p53 with its regulator MDM2. Furthermore, this method was employed to identify mutant p53 proteins insensitive to the drug nutlin-3, currently in clinical practice, which usually disrupts the p53-MDM2 interactions. Thus, significant differences in the interactions were observed for p53 mutants on the DNA binding domain (Arg-273-Cys, Arg-273-His, Arg-248-Glu, Arg-280-Lys), on the structural domain (His-179-Tyr, Cys-176-Phe), on hydrophobic moieties in the DNA binding domain (Arg-280-Thr, Pro-151-Ser, Cys-176-Phe) and hot spot mutants (Gly-245-Cys, Arg-273-Leu, Arg-248-Glu, Arg-248-Gly), which signifies the importance of point mutations on the MDM2 interaction and nutlin3 effect, even in molecular locations related to other protein activities.


Assuntos
Mutação/genética , Neoplasias/genética , Proteínas Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Ligação a DNA/genética , Domínios Proteicos/genética , Mapas de Interação de Proteínas/genética , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA