RESUMO
The rare skin disorder pachyonychia congenita (PC) is an autosomal dominant syndrome that includes a disabling plantar keratoderma for which no satisfactory treatment is currently available. We have completed a phase Ib clinical trial for treatment of PC utilizing the first short-interfering RNA (siRNA)-based therapeutic for skin. This siRNA, called TD101, specifically and potently targets the keratin 6a (K6a) N171K mutant mRNA without affecting wild-type K6a mRNA. The safety and efficacy of TD101 was tested in a single-patient 17-week, prospective, double-blind, split-body, vehicle-controlled, dose-escalation trial. Randomly assigned solutions of TD101 or vehicle control were injected in symmetric plantar calluses on opposite feet. No adverse events occurred during the trial or in the 3-month washout period. Subjective patient assessment and physician clinical efficacy measures revealed regression of callus on the siRNA-treated, but not on the vehicle-treated foot. This trial represents the first time that siRNA has been used in a clinical setting to target a mutant gene or a genetic disorder, and the first use of siRNA in human skin. The callus regression seen on the patient's siRNA-treated foot appears sufficiently promising to warrant additional studies of siRNA in this and other dominant-negative skin diseases.
Assuntos
RNA Interferente Pequeno/metabolismo , Dermatopatias/terapia , Adulto , Feminino , Humanos , Mutação/genética , Paquioníquia Congênita/genética , Paquioníquia Congênita/terapia , RNA Interferente Pequeno/genética , Dermatopatias/genéticaRESUMO
Possible unwanted folding of biopharmaceuticals during manufacturing and storage has resulted in analysis schemes compared to small molecules that include bioanalytical characterization besides chemical characterization. Whether bioanalytical characterization is required for nucleotide-based drugs, may be decided on a case-by-case basis. Nucleotide-based pharmaceuticals, if chemically synthesized, occupy an intermediate position between small-molecule drugs and biologics. Here, we tested whether a physicochemical characterization of a nucleotide-based drug substance, BC 007, was adequate, using circular dichroism (CD) spectroscopy. Nuclear magnetic resonance confirmed CD data in one experimental setup. BC 007 forms a quadruplex structure under specific external conditions, which was characterized for its stability and structural appearance also after denaturation using CD and nuclear magnetic resonance. The amount of the free energy (ΔG0) involved in quadruplex formation of BC 007 was estimated at +8.7 kJ/mol when dissolved in water and +1.4 kJ/mol in 154 mM NaCl, indicating structural instability under these conditions. However, dissolution of the substance in 5 mM of KCl reduced the ΔG0 to -5.6 kJ/mol due to the stabilizing effect of cations. These results show that positive ΔG0 of quadruplex structure formation in water and aqueous NaCl prevents BC 007 from preforming stable 3-dimensional structures, which could potentially affect drug function.